导航:首页 > 小学学科 > 小学数学符号的应用

小学数学符号的应用

发布时间:2021-01-15 08:27:08

小学数学的应用公式都有哪些

1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。假分数大于或等于1。
18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个, 叫做最大公约数。)
35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48,自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。 141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3。 141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。 141592654……
52,什么叫代数 代数就是用字母代替数。
53,什么叫代数式 用字母表示的式子叫做代数式。如:3x =ab+c
小学数学公式大全,第二部分:计算公式。
数量关系式:
1, 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2, 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3, 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4, 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5, 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6, 加数+加数=和 和-一个加数=另一个加数
7, 被减数-减数=差 被减数-差=减数 差+减数=被减数
8, 因数×因数=积 积÷一个因数=另一个因数
9, 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)
植树问题:
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣〈1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
面积,体积换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公顷=10000平方米 1亩=666。666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量换算:
1吨=1000 千克1千克=1000克1千克=1公斤
人民币单位换算
1元=10角1角=10分1元=100分
时间单位换算:
1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分1分=60秒 1时=3600秒
小学数学公式大全,第三部分:几何体。
1、正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2、长方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
长方体的体积=长×宽×高 公式:V=a×b×h
3、三角形三角形的面积=底×高÷2。 公式:S= a×h÷2
4、平行四边形平行四边形的面积=底×高 公式:S= a×h
5、梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6、圆直径=半径×2 公式:d=2r半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr圆的面积=半径×半径×π 公式:S=πrr
7、圆柱
圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高。 公式:V=Sh
8、圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
三角形内角和=180度。
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。

㈡ 小学数学应用公式大全

小学数学应用题常用公式大全

1、【和差问题公式】 (和+差)÷2=较大数; (和-差)÷2=较小数。 2、【和倍问题公式】 和÷(倍数+1)=一倍数; 一倍数×倍数=另一数, 或和-一倍数=另一数。 3、【差倍问题公式】 差÷(倍数-1)=较小数; 较小数×倍数=较大数, 或较小数+差=较大数。 4、【平均数问题公式】
总数量÷总份数=平均数。 5、【一般行程问题公式】 平均速度×时间=路程; 路程÷时间=平均速度; 路程÷平均速度=时间。 6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答: (速度和)×相遇(离)时间=相遇(离)路程; 相遇(离)路程÷(速度和)=相遇(离)时间; 相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间; 追及(拉开)路程÷追及(拉开)时间=速度差; (速度差)×追及(拉开)时间=追及(拉开)路程。 8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间; (桥长+列车长)÷过桥时间=速度; 速度×过桥时间=桥、车长度之和。 9、【行船问题公式】 (1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速。 (2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。 10、【工程问题公式】
1)一般公式: 工效×工时=工作总量; 工作总量÷工时=工效; 工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几; 1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5„„。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。) 11、【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)„„„„„„人数
10×8-9=80-9=71(个)„„„„„„„„„桃子 或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解(680-200)÷(50-45)=480÷5 =96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?” 解(90-8)÷(10-8)=82÷2 =41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式: 亏÷(两次每人分配数的差)=人数。 (例略)
(5)一次有余(盈),另一次刚好分完,可用公式: 盈÷(两次每人分配数的差)=人数。 (例略)
12、【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一(100-2×36)÷(4-2)=14(只)„„„兔;
36-14=22(只)„„„„„„„„„„„鸡。
解二(4×36-100)÷(4-2)=22(只)„„„鸡; 36-22=14(只)„„„„„„„„„„兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?” 解一(4×1000-3525)÷(4+15) =475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15) =1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元„„。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)„„„„„„„„„„„鸡 〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)„„„„„„„„„„兔(答略)

㈢ 小学数学符号的作用

小学的数学是很简单的,所用到的数学符号无非就是加减乘除,大括号小内括号中括号等等容。不过每个运算符号或者是大小括号都是有自己的作用的,一定要掌握好这些基本功。要懂得先算乘除后算加减。同级别的运算符号,从左至右运算。如果有括号要先算括号内部的。

㈣ 小学数学符号有什么趣味性

数学符号化思想主要有下面的几层含义:1.人们有意识地、普遍地运用符号去概括、表述、研究数学;2.研究符号能够生存的条件,即反复选择用怎样的符号才能简洁、准确地反映数学概念的本质,有利于数学的发现和发展,且方便于打字、印刷等等;3.数学符号已经过人工筛选与改造,形成一种约定的、规范的、形式化的系统。
符号化思想的渗透在小学数学教科书中是根据不同的教学阶段的具体情况进行的。渗透主要是从如下几方面作了有计划、有步骤的安排。即:
1.变元的思想。
变元思想是根据小学生的年龄特点和知识水平,采取不同的形式进行渗透,旨在让学生逐步了解变元的思想。例如,九年义务教育五年制小学教科书数学第一册第10页就有“□”出现在算式中。第二册教科书中,就出现借用方格子“□”或括号“()”等代替变元符号“x”,让小学生在其中填上合适的数。例如,
6-□>4 8<14-□
12>7+□ 8+□<11
8<14-□ 10+□<13
诚然,这样的题目我们教师只要求小学生在“方格中”填进一个合适的数,但我们必须明白,如果把“□”换成“x”,那么,上述的算式是不等式,变元x有确定的取值范围。我们应当明白编教科书的意图,符号“□”在这里只起着“位置占有者”的作用。目的是引导学生去思考问题,解决一些有趣的问题,借此,发展学生的思维能力。
2.用字母表示数的思想。
小学数学教科书中的“简易方程”这一部分内容向学生提出用字母表示数。它的实质是一种抽象化。其目的是为了更深刻地探索、揭示数学规律,达到更准确、更简洁地表达数学规律,在较大范围内肯定数学规律的正确性。比如,加法的交换律用a+b=b+a,圆面积用S=πr2表示等。
3.列方程解应用题的思想。
用方程解法来解答应用题,解法本身蕴含着符号化思想,它主要体现在如下几个方面:(1)代数假设,用字母代替未知数,与已知数平等地参与运算;(2)代数翻译。把题中自然语言表述的已知条件,译成用符号化语言表述的方程。(3)解代数方程。把字母看成已知数,并进行四则运算,进而达到求解的目的。

㈤ 怎样应用小学数学公式

【和差问题公式】来自(和+差)÷2=较大数;
(和-差)÷2=较小数。
2、【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或和-一倍数=另一数。
3、【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数。
4、【平均数问题公式】
总数量÷总份数=平均数。
5、【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。

㈥ 如何培养小学生数学符号意识

数学符号的发明和使用比数字晚,但是数量多得多,现在常用的有200多个,初中数学书里就不下20多种。而且它们每一个都有一段有趣的经历,更重要的是使用数学符号在数学学习中有诸多的好处。
数学的基本语言是文字语言、符号语言和图像语言,其中最具数学学科特点的是符号语言,是人们进行计算、推理和解决问题的一种工具。数学符号简洁、抽象、准确、清晰,具有简约思维、提高效率、便于交流的功能。符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。
建立“符号意识”,有助于学生理解符号的意义并进行数学思考。为学生创设学习情境,唤醒生活经验,并在相互交流的过程中,逐渐理解符号的意义,利用符号来解决问题是培养学生符号意识的有效策略:
一、挖掘学生已有经验中潜在的符号意识
在现实生活中,商店的招牌,医院的红“十”字标记,公路上的交通标志……各种各样的符号处处可见。语言学家皮埃尔·吉罗说:“我们是生活在符号之间。”在这个“符号化”的世界中,学生获得的生活经验已让他们初步感受到符号存在的现实意义。比如,当他们看到店门前精致的“M”时,立刻就可想到麦当劳。可以说在日常生活中,学生已经初步具有了符号意识,感受到生活中的符号所体现出的简约、严谨、科学的特质。这种符号意识对数学符号感的形成起着积极的促进作用。
比如,教学“找规律”时,课件出示:路边的灯笼是按照紫色、绿色、紫色、绿色……这样的规律排列的。提问:我们能不能想办法把这排灯笼的规律表示出来呢?由于灯笼是较难直接画出来的,这就容易引发学生利用已有的符号经验,自主思考。结果有的学生画出了不同的图形:△□△□△□……;●O●O●O……;□■□■□■……;有的学生用数字表示:121212……;有的学生用拼音表示:zì、lǜ、zì、lǜ、zì、lǜ……这些富有个性的符号正是已有的符号意识在起作用,学生惊喜地发现自己也是一个研究者、探索者和发现者!
二、在实际情境中帮助学生建立符号意识
著名心理学家皮亚杰说:“儿童的思维是从动作开始的,切断了动作与思维的联系,思维就不能得到发展。”因此,要解决数学符号的抽象性和小学生思维的形象性之间的矛盾,就要为学生多创设一些应用数学知识的情境,以帮助学生体验数学符号的价值。
如,在教学“用字母表示数”时,出示:老师比小华大17岁。提问:小华1岁时,老师多少岁?小华2、3、4……岁时,老师多少岁?学生回答:1+17、2+17、3+17、4+17……教师进一步提问:小华的年龄每年都在变化,老师的年龄也在变化,但是什么没有变化?
上面的每一个式子只能表示某一年老师与小华的岁数关系,能不能用一个式子简明地表示出任何一年两人的岁数关系呢?学生讨论后汇报:用a+17可以表示出任何一年老师与小华的岁数关系。教师进一步引导学生体会符号的概括性:a表示什么?a+17又表示什么?这样的教学,使学生经历从具体到抽象的认知过程,逐步体会字母的现实意义,感受数学符号的简洁美。
三、灵活运用符号强化学生的符号意识
建构主义理论认为,教学不能无视学习者已有的知识经验,简单强硬地从外部对学习者实施知识的“填灌”,而应当把学生原有的知识经验作为新知识的生长点,生长新的知识经验。数学符号意识的形成同样应该遵循这样的规律。
如,教学“三角形面积的计算”,在引导学生推导出三角形的面积=底×高÷2后,及时写出字母表达式:S=ah÷2,便于记忆和使用。在应用这一面积公式解决一些简单的实际问题后,可以让学生解决类似的问题:已知三角形的面积为40平方厘米,三角形的底为16厘米,求三角形的高。这就需要学生把三角形的面积公式进行变形:S=ah÷2→S×2=ah→S×2÷a=h,从而求出三角形的高为:40×2÷16=5(厘米)。为了帮助学生实现这样的符号运算,教师可以再次结合三角形面积公式推导的过程,体会“S×2”表示的是先根据三角形的面积求出与它等底等高的平行四边形的面积,“S×2÷a”表示用平行四边形的面积除以底就等于高,也就是三角形的高。对符号的灵活使用,大大增强了学生的符号意识。
随着数学学习的深入,符号意识的要求越来越高。在教学中,我们要帮助学生理解符号的意义,逐步引导学生经历“具体情境→抽象的符号表示→深化应用”这一逐步形式化、符号化的过程,促进符号意识的形成。

㈦ 如何加强小学生数学符号感的培养

数学符号是数学的语言,是人们进行表示、计算、推理和解决问题的工具。学习数学的目标之一是使学生懂得符号的意义,会用符号解决实际问题和数学本身的问题,发展学生的符号感。数学课程标准对小学生的数学符号感提出以下要求:“能从具体情况中抽象出数量关系和变化规律,并用符号表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序解决用符号所表示的问题。”如何按新课程标准的要求在教学中培养学生的符号感呢?笔者以为:学生符号感的建立不是一蹴而就的,是在学习过程中逐步体验和建立起来的。教学中应当尽可能地强化学生的符号意识,在实际情境中帮助学生理解符号以及表达式,关系式的意义,在解决问题中培养学生的符号感,在开放拓展中发展学生的符号感。
一、联系生活,渗透符号意识:
在现实生活中,商店的招牌,医院的红“十”字标记,公路上的各种交通标志……,这样的符号处处可见。语言学家皮埃尔·吉罗说:“我们是生活在符号之间”。在这个“符号化”的世界中,学生获得的生活经验已让他们初步感受到符号存在的现实意义。比如,当他们看到店门前精致的“M”时,立刻就可想到麦当劳。可以说在日常生活中,学生已经初步具有了符号意识,感受到生活中符号所体现出的简约、严谨、科学的特质,这种符号意识的形成,对数学符号感的形成起到了良好的促进作用。
符号意识的形成,是培养学生符号感的基础。在数学教学中,教师要能有意识地利用学生的生活经验,引导学生感受到符号引入的必要,鼓励学生用自己独特的方式表示具体情景中的数量关系和变化规律,逐步走进符号化的数学世界,这是发展学生符号感的决定因素。在认识“0~9”时,学生对于日常意义上的“数数”、“识数”、“写数”已具有了一定的水平,但是这不代表学生真正理解掌握了数字符号“0~9”,在教学中,我们就可以把数的学习放入到生活场景中去,让学生从具体事物或事件出发,丰富学生有关“数字”符号的背景知识,让学生经历从感性到理性、具体到抽象并最终形成形式化的抽象数字符号。又如在教学:教师有12个红五角星,奖励给同学们一些后,还剩5个,奖励给同学们几个?可以列式12-□=5,在这个数学问题的解决中,就渗透了用字母表示数的思想。
二、操作实践,感受符号化:
每一个符号的形成,都是对一类事物的共同特征的抽象概括,是反映事物共同属性的思维形式。数学符号的高度抽象性,往往会使学生因其抽象、难懂而产生畏难心理,影响学习效果。因此,在实际教学中,数学符号的学习不能变成单纯的抽象符号的学习,要尽可能的让学生在教师指导下做数学,通过观察、实践、分析、归纳,获得体验,感受符号化,
如教学几何图形这一类图式符号时,我们可以通过引导学生观察实物,让学生通过摸、印模、描绘等操作,从中抽象出几何图形,并让学生充分感知几何图形与实物的区别,通过多种形式变换,让学生掌握其本质特征。在教学角的认识时,就可采用如下操作流程:
1、摸(自主实践感知):分组进行搭积木游戏,摸一摸所用材料。
2、说(引入角的概念):说游戏过程,特别是摸材料的感觉和发现。
3、做(初步抽象图形):各自想办法把感受到的角呈现出来。
4、符号化:(1)认识角的各部分名称;(2)角的图形与实物对比,理解掌握角的特征。
这样的操作实践,让学生体验到了符号化,亲历了符号化的过程,提升了学习效率。
三、创设情境,增强符号感:
数学符号的功能是用符号的形式代表符号所表达的丰富内容。虽然数学符号是抽象的,但它充满生机,有其数学思想,不是枯燥的。因此,向学生提供丰富的学习素材,使学习活动尽可能的处于情境之中,是增强学生数学符号感的有效途径之一。如在教学“认识乘法”这一内容时,由于学生才第一次接触到这一新的运算符号和形式,所以教师必须要精心创设数学情景,让学生在思考探索的过程中,抽象出乘法数量关系和变化情况,在此基础上再逐步引入乘法符号,让学生学会用符号来表示数量关系。教学中可以这样做:
1、创设情境(出示课件):
场景(A)森林运动会:兔2只一组有3组,鸡3只一组有4组,猴5只一组有5组。师:你能知道兔、鸡、猴各有多少只吗?(让学生在计算过程中发现,几个相同加数相加,可以说成几个几)
场景(B)学雷锋活动:一(1)班学生参加学雷锋活动,4位同学一个小组,共有9组。师:你能知道有多少位同学吗?(让学生发现如果用加法列式就太麻烦了,而如果用“几个几”来说就很简便)
2、组织交流:有多个相同加数的连加算式,你能不能想出一种简单的方法来表示呢?
3、引入符号:在前面教学的基础上,教师揭示出这一类型算式的数量关系就是“几个几”。进而引入“×”号,让学生明确“几个几”可以写成“几乘几”,再组织学生进一步认识乘法各部分名称。
4、深化认知:继续用课件出示情境,要求学生列出两种算式,进一步感知乘法算式的简洁、精确、规范,体验到数学符号特有的美。
这样,学生在已有加法知识的基础上,通过在具体情境中的探索研究,认识了乘法,产生了积极喜悦的情绪,为以后的学习奠定了坚实的基础。
四、解决问题,发展符号感:
数学符号有自己的思想内容,它按一定的规则组织起来,成为思维活动的载体,并能简洁地反映事物的内在本质。它准确、清晰,具有简约思维、提高效率、便于交流的功能。当学生全身心地投入到解决问题的过程中,寻找到了解决办法后,才能充分体验到符号化的魅力,获得持久的学习动力。
如在教学加法交换律时,就可以让学生在一步步的问题解决中,获得a+b=b+a的符号表达式:
1、提出问题,感知规律。
师:六(1)班有男生27人,女生24人,这个班一共有多少人?
生1:27+24=51(人);生2:24+27=51(人)
师:观察两个算式,你发现了什么。(板书:27+24=24+27)
教师引导学生讨论交流得出:加数位置换了,和不变。
2、深化问题,体验规律。
师:是不是所有的加法算式都具有同样的特性呢?你可以举例说明。(学生分组,按教师提出的要求进行小组交流学习)
师:(组织学生观察各组所写算式)这样的算式都具有我们前面发现的规律吗?(生思考回答)
师:像这样的算式,写得完吗?(生思考回答)
3、建构规律,发展符号感。
师:这一类写不完的算式,你能用一句话表达它们的规律吗?
师生互动交流得出定律:两个数相加,交换加数的位置,和不变。
师:这就是加法交换律,你还能用其他的方式表达出它的意义吗?(生讨论交流)
师:展示学生创造的表达式,组织评析。
师小结:数学上常用字母来表示数,字母符号的运用促进了数学的发展。一般地我们可以用a和b来表示两个加数。这样加法交换律就可以表达为:a+b=b+a。(师板书字母公式)
这样的问题解决与探索,引起了学生浓厚的学习兴趣,使学生建立了正确的符号感,同时学生也发现了用字母表示数能使数学问题变得简洁,体现了数学符号的简洁美。
随着数学学习内容的深入,符号感的培养必将被不断地赋予新的内容。教学中,只要我们给学生提供机会经历“具体情境→抽象化→符号表示→深化应用”这一系列逐步形式化,符号化的过程,学生的符号感就能真正得到培养和发展。

㈧ 小学数学作业中怎样巧妙运用批改符号

这是一个很好的论复文题目,“巧妙制应用”批改符号的目的是要帮助学生找到作业中的问题,提示性地通过学生的思考来解决问题,最后达到学生自主学习的目的。所以你的题目可能还没有写完整,可以修改得更简洁明确一点。
批改符号的使用除了教导处规定的符号外(一般性通用的符号),教师可以创造一些符号,当然要告之学生这些符号的意思,长期使用对学生是有好处的。每个教师都有自己的一套。要回答你这个问题需要一定的篇幅,望你能在此点上进行研究,必有收获。

阅读全文

与小学数学符号的应用相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99