导航:首页 > 小学学科 > 小学数学建模论文材料

小学数学建模论文材料

发布时间:2021-01-10 06:06:46

『壹』 如何写“走美杯” 小学数学建模论文

先选一个自己比较熟悉的事例,然后将题目弄透
写的时候分几步:
1,摘要 就是总体分析一下题目及自己的写作思路
2,假设并建立一种模型
3,进行数学分析,数据分析
4,得出结论
5,对模型的评估和改进
6,标注参考文献
写完后最好找辅导老师修改斧正一下,注意与生活中的一些模型相结合

『贰』 数学建模论文具体的格式要求是

数学建模论文具体的格式要求如下:

1、论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

2、论文第一页为承诺书,具体内容和格式见本规范第二页。

3、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

4、论文题目和摘要写在论文第三页上,从第四页开始是论文正文。

5、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

6、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

7、论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

8、摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

9、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

10、参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。

11、参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

12、参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

(2)小学数学建模论文材料扩展阅读:

电子版论文格式规范

1、参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

2、参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

3、支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。

所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);

如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

『叁』 数学建模论文怎么写啊

摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。
关键词:数学建模;综合素质;教学;数学应用
(一)数学建模的概念
数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。
(二)数学建模的思想内涵      

『肆』 数学建模论文摘要该怎么写

学术堂来告诉你数学建模论文摘要该怎么写:
首先明确摘要要求:
您正在撰写的论文可能有特定的指导方针和要求,无论是发表在期刊上,还是在课堂上提交,还是工作项目的一部分。在开始写作之前,请参考你收到的要求或指南,以确定需要记住的重要问题。
其次摘要要自成体系
摘要仅仅是一个摘要吗?大多数情况下,摘要应该完全独立于你的论文。不要抄袭和粘贴正文中的内容,也就是不要直接引用自己的原文中的话,避免简单地从你写作的其他地方转述你自己的句子。用全新的词汇和短语写出你的摘要,做到精简与凝练的同时,保持它的趣味性和创新性。
接着寻找核心关键词
完成论文之后,试着用5-7个重要的词或短语作为摘要研究的关键。如果你的论文在期刊上发表了的话,人们能够在网上数据库中搜索摘要的核心内容,容易且快速找到你的论文。而且,这样一些关键性的词语,能够吸引人们的注意力。
然后避免无关内容
需要注意的是,摘要不能脱离正文,更不能与论文内容相矛盾。不要引用你在论文中没有提到的观点或研究,不要引用你在论文中不使用的材料,否则非常容易引起误导。
最后进行基本修改
摘要是一篇文章,和其他文章一样,应该在完成之前进行修改。检查它的语法和拼写错误,并确保它的格式正确。论文摘要不要列举例证,不讲研究过程,不用图表,不给化学结构式,也不要作自我评价。

『伍』 数学建模论文范文

数学建模--教学楼人员疏散--获校数学建模二等

数学建模
人员疏散

本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.
摘要
文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。

关键字
人员疏散 流体模型 距离控制疏散过程

问题的提出
教学楼人员疏散时间预测
学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。

前言
建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。
随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。
一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。
其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。
此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为2.5kW/m2(烟气层温度约为200℃)。

图1 疏散影响因素

预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。

图2 人员疏散与烟层下降关系(两层区域模型)示意图

疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。
疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。

图3 与疏散行动时间预测相关的参数及其关系

模型的分析与建立

我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设:

u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;
u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;
u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配
u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。

以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。

1号教学楼平面图

教学楼模型的简化与计算假设

我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。

图4 原教室平面简图

在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。

图5 简化后教室平面简图

经测量,走廊的总长度为44米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。
对火灾场景做出如下假设:
u 火灾发生在第二层的15号教室;
u 发生火灾是每个教室都为满人,这样这层楼共有600人;
u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;
u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败;

对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.
人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:

式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。
假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.
为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。

图6 人员疏散的若干主要参数

Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为:

式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。
这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。
3 结果与讨论
在整个疏散过程中会出现如下几种情况:
(1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程;
(2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程;
(3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程;
(4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程;
(5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。
起火教室内的人员密度为100/ 125 = 0.8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为:

f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)

式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕。
设人员按照4.1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为9.2s。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第106.5s(60+24.3+9.2+13)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。
起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在129.2s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为:
p1 = 100 ×2 = 200 (人) (4)

此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= 0.12 ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:
?/P>

0.27
0.73

f1 = (3400/ 8040) × 200 = 2.2人/ s) (5)

式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在286.5s(180+106.5)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1:

p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人) <0 (6)

所以,二层楼的人员已经全部到达一层
此后,需要使用二层楼梯间的人数p2 :

p2 = 100×3=300 (人) (7)

相应此阶段通过二楼楼梯间的流量f 2 :
0.27
0.73

f2 = (3400/8040) × 200 = 2.5(人/ s) (8)

这┤送ü楼楼梯的疏散时间t1 :

t1 = 300÷2.5 = 120 ( s) (9)

因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象
所以,通过二楼楼梯的总体疏散时间T :

T = 286.5+ 120×3 = 646.5 ( s) (10)

最终根据安全系数得出实际疏散时间为T实际:

T实际 =646.5×(1.5~2)=969.75~1293( s) (11)

图7 二楼楼梯口流量随时间的变化曲线图

关于几点补充说明:
以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。
在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。
关于1号教学楼的几个出口:
u 大厅有一个大门
u A座一楼靠近正厅有一个门
u A座大教室旁边有一个门
u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口
u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)
u A、B座大教室各有一个后门
合计: 8个出口
致校领导的一封信
尊敬的校领导,你们好。
针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。
以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。
该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为646.5 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为646.5 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。
如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。

『陆』 数学建模论文范文怎么写

数学建模论文写作

一、写好数模答卷的重要性
1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题
1.评阅原则
假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构
题目(写出较确切的题目;同时要有新意、醒目)
摘要(200-300字,包括模型的主要特点、建模方法和主要结论)
关键词(求解问题、使用的方法中的重要术语)
1)问题重述。
2)问题分析。
3)模型假设。
4)符号说明。
5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)
7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)
8)模型评价(特点,优缺点,改进方法,推广。)
9)参考文献。
10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)
3. 要重视的问题
1)摘要。
包括:
a. 模型的数学归类(在数学上属于什么类型);
b. 建模的思想(思路);
c. 算法思想(求解思路);
d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);
e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。
2)问题重述。
3)问题分析。
因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。
5)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设
b. 根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。
6) 模型的建立。
a. 基本模型:
ⅰ)首先要有数学模型:数学公式、方案等;
ⅱ)基本模型,要求完整,正确,简明;
b. 简化模型:
ⅰ)要明确说明简化思想,依据等;
ⅱ)简化后模型,尽可能完整给出;
c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;
ⅱ)能用简单方法解决的,就不用复杂方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:
▲ 建模中,模型本身,简化的好方法、好策略等;
▲ 模型求解中;
▲ 结果表示、分析、检验,模型检验;
▲ 推广部分。
e.在问题分析推导过程中,需要注意的问题:
ⅰ)分析:中肯、确切;
ⅱ)术语:专业、内行;
ⅲ)原理、依据:正确、明确;
ⅳ)表述:简明,关键步骤要列出;
ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
7)模型求解。
a. 需要建立数学命题时:
命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
8) 结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;
b. 对数值结果或模拟结果进行必要的检验;
结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;
d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;
e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲ 求解方案,用图示更好。
9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
10)模型评价
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
11)参考文献
12)附录
详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:
a. 模型的正确性、合理性、创新性
b. 结果的正确性、合理性
c. 文字表述清晰,分析精辟,摘要精彩

三、关于写答卷前的思考和工作规划
答卷需要回答哪几个问题――建模需要解决哪几个问题;
问题以怎样的方式回答――结果以怎样的形式表示;
每个问题要列出哪些关键数据――建模要计算哪些关键数据;
每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理
1. 准确――科学性;
2. 条理――逻辑性;
3. 简洁――数学美;
4. 创新――研究、应用目标之一,人才培养需要;
5. 实用――建模、实际问题要求。

五、建模理念
1. 应用意识
要解决实际问题,结果、结论要符合实际;
模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2. 数学建模
用数学方法解决问题,要有数学模型;
问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
3. 创新意识
建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

『柒』 数学建模小论文:

你可以假设形状的影响因素就是截面积,速度的影响因素为kv(k为一个正数)。
那么阻内力f=-kAv,A为截面积。
冰雹受到的容合力F=G+f=ma。
这里还可以对冰雹的形状做进一步假设,如果是球,那么m=密度*球的体积, 体积可以和截面积A对应。
这样,如果k和A已知,那其实就只剩下v和a的方程了,将a=dv/dt,带入初始条件v=0, 以及初始高度,就可以解出微分方程了。

『捌』 生活中的数学建模论文,毕业论文

本文作者(袁卫东),请您在阅读本文时尊重作者版权。

数学建模在生活实际中的应用

【摘要】数学建模应用非常广泛。数学模型的最优之处,就是它扬弃了具体事物中的一切与研究目标无本质联系的各种具体的物质属性,是在一种纯粹状态下的数量、关系的结构,因此更具有普遍性。数学学科以外的诸多自然科学和人文、社会科学,只有成功地建立起数学模型,才算得上趋于成熟和完善。本文结合数学教学,介绍了建立数学模型的一般步骤和一些简单的数学模型形式。

【关键词】数学模型 函数关系 数据分析 职业教育

依据职业教育的培养目标,在职业教育阶段,学生仅掌握书本知识已经不能满足社会的要求,因此,引导学生把所学的数学知识与生活中的实际问题相结合,开展数学建模活动应成为职业教育数学教学活动的重要理念之一。

1 问题提出

1.1 问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。

1.2 实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为x元。提价后的商品单价为(25x)元

提价后的销售量为(30000-1000x)件

则(25 x)(30000-1000x)≥750000

(25 x)(30-x)≥750

0≤x≤5

即提价最高不能超过5元。

2 数学建模的概念

数学建模,即构造数学模型,具体地说就是将某一领域或部门的某个实际问题,经过抽象、简化、明确变量和参数,并依据某种“规律”建立变量和参数间的明确关系(数学模型),然后求解该问题,并对结果进行解释和验证,如果正确,则可投入使用,否则将重新对问题的假设进行改进,多次循环,直到正确。

3 数学建模的一般步骤

这里所说的建模步骤只是大体上的规范,实际操作中应针对具体问题作具体分析,灵活运用。建立数学模型的一般步骤如下:

(1)模型准备:

了解熟悉实际问题,以及与问题有关的背景知识,明确建模的目的,掌握研究对象的各种信息(如数据、资料等),弄清对象的特征,分析原型的结构,有时要求建模者做深入细致的调查研究,按模型的需要有目的地收集所需要的数据。

(2)模型假设:

分析处理数据、资料,确定现实原型的主要因素,抛弃次要因素,对问题进行必要的简化,用精确的语言找出必要的假设,这是非常关键的一步。

(3)模型建立:

根据主要因素及所作的假设,利用适当的数学工具描述有关变量和元素的关系,并建立相应的数学模型(如方程、不等式、表格、图形、函数、逻辑运算式、数值计算式等)。在建模时,数学工具的采用要根据实际问题的特征、建模的目的和要求以及建模者的数学特长而定。因此,采用的数学方法不同,建立的模型可能也不同。但应遵循一条原则,即尽量采用简单的数学工具,以使模型得到更广泛的应用。

(4)模型求解:

使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。利用数学工具,对模型进行求解,包括解方程、图解、逻辑推理、定理证明、性质讨论等,以找出数学上的结果。要求建模者掌握相关的数学知识,尤其是计算技巧和计算机技术。

(5)模型分析:

对模型求解的结果进行数学上的分析,有时需要根据问题的性质分析各变量之间的依赖关系或性态,有时需要根据所得结果给出数学式的预测和最优决策、控制等。

(6)模型检验:

把模型分析的结果返回到实际应用中,用实际现象、数据等检验模型的合理性和实用性,即验证模型的正确性。通常,一个成攻的模型不仅能够解释已知现象,而且还能预言一些未知现象。

(7)模型应用:

如果检验结果与实际不符或部分不符,而且求解过程没有错误,那么问题一般出在模型假设上,此时应该修改或补充假设。如果检验结果与实际相符,并满足问题所要求的精度,则认为模型可用,便可进行模型应用。

我们用图1示来解释一下它的基本过程:

4 数学模型介绍

4.1 建立竖式模型

例1 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划本年度投入800万元,以后每年投入比上一年减少,本年度当地旅游业收入估计约400万元,由于该项建设对旅游业的促进作用,预计今后的旅游收入每年比上年增加。问至少经过多少年,旅游业总收入才能超过总投入?

解:设n年内(本年度为第一年),总投入为an万元,旅游业总收入为bn万元。

第一年投入800万元,

第二年投入万元……,

第n年投入为万元,所以n年内的总收入为:

第一年旅游收入为400万元,

第二年旅游收入为万元,……,

第n年旅游收入为万元,所以n年内的总收入为:

,化简得:

>0

解得<即n>5.

故至少经过5年,旅游业总收入才能超过总投入。

4.2 建立方程(方程组)模型

例2 永强加工厂接到一批订单,为完成订单任务,需用a米长的材料440根,b米长的材料480根,可采购到的原材料有三种,一根甲种材料可截得a米长的材料4 根,b米长的材料8根,成本为60元;一根乙种材料可截得a米长的材料6根,b米长的材料2根,成本为50元;一根丙种材料可截得a米长材料4根,b米长的材料4根,成本为40元。问怎样采购,可使材料成本最低? 数学建模在生活实际中的应用(2)

分析:若直接设材料成本最低为x元,则根据已给条件不好列方程,所以我们不妨借助于辅助变量;令甲种取x根,乙种取y根,丙种取z根,那么可得到

再设总成本为p元,则求出p=60x 50y 40z的最小值即可。

解:设甲种材料取x根,乙种材料取y根,丙种材料取z根,则x,y,z满足

设总成本为p元,则求p的最小值,由①,②得

因x,y都是正数∴0≤z≤100又∵x,y都是非负整数 ∴令z=5t,则0≤t≤20

于是p=60x 50y 40z=60(50-2t) 50(40-2t)=5000-20t

显然t=20时,成本最低,即当x=10,y=0,z=100时,取得材料的最低成本为4600元。

4.3 建立不等式模型

例3 南泉汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆。现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如表1:

(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值范围;

(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26800元,请你说明有多少种分派方案,并将各种方案设计出来。

解:(1)y=1000(20-x) 900x 800x 600(10-x)=26000 100x (0≤x≤10)

(2)由题意得:26000 100x≥26800,

又因为0≤x≤10,且x是整数,所以x取8,9,10故方案有3种。

方案1:A地派甲型车12辆,乙型车8辆;B地派甲型车8辆,乙型车2辆;

方案2:A地派甲型车11辆,乙型车9辆;B地派甲型车9辆,乙型车1辆;

方案3:A地派甲型车10辆,乙型车10辆;B地派甲型车10辆。

例4 学校食堂定期从粮店以每吨1500元的价格购买大米,每次购进大米需支付运输费100元,食堂每天需用大米1吨,贮存大米的费用为每吨每天2元,假定食堂每次均在用完大米的当天购买。(1)该食堂每多少天购买一次大米可使平均每天支付的总费用最少?(2)粮店提出价格优惠条件:一次购买量不少于20吨时, 大米价格可享受九五折(即原价的95%),问食堂可否接受此优惠条件?说明理由。

解:(1)设每n天购进一次大米,则购米量为n吨,那么库存费用为:

2[n (n-1) … 2 1]=n(n 1),

记平均每天的总费用为y1,则

当且仅当,即n=10时,等号成立,故应每10天购买一次大米,可使平均每天支付的总费用最少。

(2)显然,若接受优惠条件,则至少每20天订购一次,即每m天购一次时,有m≥20,记此时每天总费用为y2,那么

(m≥20)

因为

所以函数是增函数,故当m=20时,y2最小值为1451,因为1451<1521,所以接受价格优惠条件。

4.4 构建几何模型

例5 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图所示)的东偏南方向300km的海面P处,并以20kmh的速度向西偏北方向移动, 台风侵袭的范围为圆形区域,当前半径为60km,并以10kmh的速度不断增大,问几小时后该城市开始受到台风的侵袭?

解:记时刻t(h)台风中心为p,台风侵袭区域的半径为r(t)



,由题意当时,城市O受到台风侵袭。

而令,

所以

即:



所以12小时后该城市开始受到台风的侵袭。

4.5 构建排列,组合模型

例6 两条直径把圆面分为四部分,如图所示:现用四种颜色涂这四个区域,问相邻区域不同色的涂法有几种?

解:分三类:用四种颜色去涂有

用三种颜色去涂,则相对的两个区域涂同一颜色,

于是有

用两种颜色去涂有。

所以共有24 48 12=84种。

4.6 构建函数模型

例7 一商场经销某种电器,根据销售情况年进货量为5000台,分若干次进货,若每台电器价格为2400元,每次进货需费用1600元(包括运输等各种费用), 且在售完该电器时能立即进货,每一台电器的年库存保管费率为10﹪。为降低成本,使一年的进货费用和库存保管费用之和最省,每次应进货多少台?此时一年的进货费与库存保管费之和是多少?

解:设每次进货x台,则由上述分析知,每年总费用y(进货费与库存保管费之和)为:

当且仅当即x=250时取等号,此时可取最小值60000。

答:每次进货250台时,一年的进货费与库存保管费之和最省,为60000元。

例8建造一个容积为8m3,深为2m的长方无盖水池,如果池底和池壁的造价每平方米分别120元和80元,那么水池的最低造价为多少元?

分析设池长为xm,由已知条件,池底面积4m2,则池宽为4m,那么水池总造价y元为:

解:将函数转化为方程,利用判别式△来解决。

时取得最小值解得=1760元,此时x=2附条件,则水池的最低造价为1760元,

4.7 构建实际生活的数学模型

例9海中有一个小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行。开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处后,货轮继续向东航行。你认为货轮继续向东航行途中会有触礁的危险吗?

已知:由数学模型知

求AD的长

解:由数学模型得



由BD—CD=BC 又BC=20海里,



海里

∵20.79海里>10海里, ∴货轮没有触礁的危险. 例10我们都知道,《乌鸦喝水》的故事,说的是:一只乌鸦口渴了,到处找水喝。乌鸦看见一个瓶子,瓶子里有水。可是瓶子里的水不多,瓶子口有小,乌鸦喝不着水,怎么办呢?乌鸦看见瓶子旁边有许多小石子,想出办法来了。乌鸦把小石子一个一个地放进瓶子里,瓶子里的水渐渐升高,乌鸦就喝着水了。问:这一只聪明的乌鸦,可是这只聪明的乌鸦真的能喝到水吗?

解构建数学模型,不妨假定所投入的石块都是大小相同的石球,其直径为r,共有n 个。所有的小石球都紧密地排在一起,并且球心都在同一条直线上。再假定瓶了的形状是方柱体,其内部空间被分成 n个棱长为r 的小正方体。这样,瓶子里的总空隙就可以看作是每个小石子的外切正方体与小石球体积差的总和。由上面的假定可知:每一个小石球的体积为,其外切小正方体的体积为r3,所以瓶子里的总空隙为,

而就表示瓶子里所有空隙的总和等于瓶子总空隙的48﹪,也就是说,瓶子里所有空隙 的总和比瓶子容积的一半稍小一些,因此,瓶子里的原有水量不及瓶子的一半时,乌鸦就不可能用投石块的方法把水面升到瓶口而喝到水。事实上,这个结论与小石块是不是球体,瓶子的形状是不是方柱体都无关。而且,生活中的瓶子一般都是中下部较大,瓶口较细,这也应该会减少水面上升的高度,就更增加了乌鸦喝水的难度。所以说,当瓶子里的原有水量不到瓶子的一半时,乌鸦是不可能喝到水的。

上述是对数学建模在生活实际中应用的一些总结,利用数学建模的方法,能够开拓学生思路,加深对学习过程的认识,培养学习兴趣,提高求知欲和认知能力,更好的完成职业教育目标。数学建模具有广阔的发展前景,我们的建模不应该拘泥于形式,束缚于教条。我们应该密切关注生活,密切结合课本,改变原本,将知识重新分析组合,综合拓广,使之成为立意高,情景新,设问巧,并赋予时代气息的问题,这对培养学生思维的灵活性,敏捷性,深刻性,广阔性,创造性是大有益处的。

参考文献

[1] 章建跃,郭丽华.建构观下的数学教学.数学通报,2000,6:12-14.

[2] 辛明廷,刘志安.怎样列方程组解应用题.吉林教育出版社,1996.

[3] 杨首中.国民经济方面的数学应用问题的解决方案.中学数学教与学,2002,4:52-55.

[4] 吴文锐.求解排列组合应用题的八字诀.中学数学研究,2005,1:11-12.

[5] 彭林,乔家瑞.巧学数学.中国青年出版社,1997.

[6] 翟正才.高考概率统计知识与其它内容的交汇.中学数学研究,2006,1:19-20.

[7] 张胜元,李清.谈数学建模与教育改革.福建中学数学,2001,9:2-3.

[8] 朱成杰.数学思想方法教学研究导论.上海文汇出版社,2001.

[9] 莫绍弟.数学应用题的几类建模方法.科教文汇报会,2007.9.

『玖』 小学数学建模论文

数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

阅读全文

与小学数学建模论文材料相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99