导航:首页 > 小学学科 > 小学数学自然数的概念

小学数学自然数的概念

发布时间:2021-01-07 16:55:14

小学数学中的概念,比如说自然数的意义,越多越好!

小学数学的基础知识、基本概念
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。混循环小数
与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。
有限小数
小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
分数
表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)
真分数
分子比分母小的分数叫真分数。
假分数
分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)
带分数
一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
关于 (n表示自然数)是否是分数
是分数,但不能用分数的意义去解释它,它既不属于真分数,也不属于假分数,而是一个特殊分数,叫零分数。
数与数字的区别
数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
0的意义
0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。
0是一个数。
0是一个偶数。
0是任何自然数(0除外)的倍数。
0有占位的作用。
0不能作除数。
0是中性数。
十进制
十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。
加法
把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。
减法
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。
乘法
求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。
除法
已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。
加、减法的运算定律
加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。
在减法中,被减数、减数同时加上或者减去一个数,差不变。
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
乘、除法运算定律
乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。
乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。
乘法的其他运算定律
一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
除法的运算定律---商不变性质
两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
乘法的意义
一道乘法算式一般有下面几个意义:
一、求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?
二、求一个数的若干倍是多少?例如:27×0.3或者 的意义:求27的十分之三是多少?
除法的意义
一道除法算式,一般有下面几个意义:
1、一个数里有几个除数。简称“包含除法”。 例如,24÷3表示24里面包含有几个3。
2、一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍?
3、把一个数平均分成若干份,每份是多少?简称“等分除法”。
例如:24÷3,表示把24平均分成3份,每份是多少?
4、已知一个数的几分之几是多少,求这个数。
例如: ,表示:已知一个数的三分之一是24,求这个数。
整除与除尽
整除:
甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。
除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。
整除可以说是除尽,但除尽就不能说一定叫整除。
例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。
又如:10÷3=3……1,既不叫整除,(因为余数不为零)也不叫除尽。
约数和倍数
当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、……等数而言,是其中某个数的约数。
奇数与偶数
凡是能被2整除的数叫偶数,反之,不能被2整除的数叫奇数。
质数(素数)与合数
一个数的约数只有1和它本身的数叫做质数,也叫素数。反之,一个数的约数除了1和它本身以外,还有其他的约数,这个数就叫合数。
1是否质数
由于1的约数只有1个,所以1既不是质数,也不是合数。
公约数
几个数公有的约数,叫做公约数。
它的个数是有限的,既有最大的,也有最小的。
互质数
两个数的公约数只有1,而没有其他公约数的,这两个数就叫互质数。
质数与互质数
这两个概念没有什么联系。两个质数,不能肯定就是互质数。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。
质因数
把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。
分解质因数
把一个合数分解成几个质数相同的形式,就叫做分解质因数。
公倍数
几个数公有的倍数,叫做公倍数。它的个数是无限的,只有最小的,没有最大的。
最大公约数
几个数公有的约数中,最大的一个就叫做这几个数的最大公约数。
最小公倍数
几个数公有的无限个倍数中,最小的一个,就叫做这几个数的最小公倍数。
能被2整除的判断方法
一个数能否被2整除,只要看这个数的末尾是否有0、2、4、6、8这五个数的其中一个即可。
能被5整除的判断方法
一个数能否被5整除,只要看这个数的末尾是否有0、5这两个数的其中一个即可。
能被3整除的判断方法
一个数能否被3整除,只要看这个数的各个数位上的数字和能否被3整除。
分数单位
分子为1,分母不为零的真分数,就叫这个分数的分数单位。例如: 的分数单位是 ,它有7个这样的分数单位。又如 的分数单位是 ,它有13个这样的分数单位(将带分数化成假分数)。
分数化有限小数的判断方法
一个分数能否化成有限小数,主要看分母(这里的分数一定是最简分数)是不是只有质因数“2或5”。掺杂任何其他质因数,都不能化成有限小数,反之,就一定能化成有限小数。例如: 、 、 等都能化成有限小数。 、 、 都不能化成有限小数。
分数没有基本单位
不同的分数,有不同的分数单位。没有一个共同的标准量,就没有基本单位。
分数的基本性质
一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫分数的基本性质。
分数的通分、约分
通分:把几个单位不同的分数,化成相同单位,且大小不变的分数,叫做通分。
约分:把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。
百分数
表示一个数是另一个数的百分之几的数,叫做百分数。百分数又叫百分率或百分比。百分数是特殊分数。特征是分母为100,采用符号“%”(叫做百分号)来表示。分子可以是整数,也可以是小数。
百分率
两个相同量的比的比值,用百分数和的形式表示时,这个比值叫做这两个量的百分率,也叫百分比。通常的“××率”就是百分数。如“出勤率”等。
准确数与近似数(近似值)
与实际情况完全符合的数,叫做准确数。
与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。
名数与不名数
量数与计量单位名称合起来叫做名数。例如:7米、18千克、9时25分等都叫名数。
没有带单位名称的数,叫做不名数。如2、4、6、8等,都叫不名数。
单名数与复名数
只含有一个计量单位名称的名数叫做单名数。例如7米、18千克等都叫做单名数。
含有两个或者两个以上的同类计量单位名称的名数,叫做复名数。例如:2米3分米5厘米,8小时33分,8吨8千克等都叫复名数。
高级单位与低级单位
计量单位较大的叫做高级单位,计量单位较小的叫做低级单位。高、低级单位是相对的,没有单个的高、低级单位的名数。
公历年的平年、闰年
平年:把公历年份除以4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,计365天。其中二月份有28天。
闰年:把公历年份除以4(这里不是整百的公历年份)余数为零时,就把这一年叫做闰年,计366天。其中二月份有29天。如果年份是整百的,则除以400,再看余数。
时刻与时间
时刻表示一天内某一个特指的时候,例如上午8时30分开会,这里的“8时30分”这是时刻。时间表示两个是期或两个时刻的间隔。例如,做作业用去30分钟,这里的“30分钟”就是时间。
比和比值
比:两个数相除,叫做两个数的比。一般地当数a除以b(b≠0)就叫做a与b的比,记作a:b。也可以用分数形式表示为 。
比值:比的前项除以后项所得的商,叫做比值。
比和比值有本质的不同。如 既可看作是比,又可看作是比值。如果化成 ,则只能表示为比值。
比的化简
把一个比化为最好简整数比,叫做比的化简。一般情况下,化简以后的比,前后两项为互质数。
比例
表示两个比相等的式子叫做比例。
正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示: (一定)
反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示: (一定)
直线:没有端点,可以向两端无限延长。
射线:只有一个端点。可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。
两点之间,线段最短。
垂线、垂足
两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。
角:
锐角(小于900的角)、直角(等于900的角)、钝角(大于900而小于1800的角)、平角(等于1800的角)、周角(等于3600的角)
平行线
在同一平面内的两条不相交的直线,叫做平行线。
面积和地积
面积是用来表示一个物体的表面或者平面的大小。
地积就是土地的面积。
体积和容积(容量)
体积:用来表示物体所占空间的大小,叫做体积。
容积:一个容器所能容纳物体的体积,叫做容积或容量。

Ⅱ 小学数学概念教学中应注意的几个问题

01
最小的一位数是0还是1?
这个问题在很长一段时间存在争论。先来看看《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”的叙述:“通常在自然数里,含有几个数位的数,叫做几位数。例如“2”是含有一个数位的数,叫做一位数;“30”是含有两个数位的数,叫做两位数;“405”是含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。
再来听听专家的说明:在自然数的理论中,对“几位数”是这样定义的,“只用一个有效数字表示的数,叫做一位数;只用两个数字(其中左边第一个数字为有效数字)表示的数,叫做两位数……所以,在一个数中,数字的个数是几(其中最左边第一个数字为有效数字),这个数就叫几位数。
于此,所谓最大的几位数,最小的几位数,通常是在非零自然数的范围研究。所以一位数共有九个,即:1、2、3、4、5、6、7、8、9。
0不是最小的一位数。
02
为什么0也是自然数?
课标教材对“0也是自然数”的规定,颠覆了人们对自然数的传统认识。
于此,中央教科所教材编写组主编陈昌铸如是说:国际上对自然数的定义一直都有不同的说法,以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。这次改版也是与国际惯例接轨。
从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。
“0”作为自然数的“好处”

众所周知,数学中的集合被分为有限集合和无限集合两类。有限集合是含有有限个元素的集合,像某班学生的集合。无限集合是含有的元素个数是非有限的集合,如分数的集合。因为自然数具有“基数”的性质,因此用自然数来描述有限集合中元素的个数是很自然的。
但在有限集合中,有一个最主要也是最基本的集合,叫空集{},元素个数为0。如果不把0作为自然数,那么空集的元素的个数就无法用自然数来表示了。如果把“0”作为一个自然数,那么自然数就可以完成刻画“有限集合元素个数”的任务了。于此,从“自然数的基数性”这个角度,我们看到了把“0”作为自然数的好处。
把“0”作为自然数,不会影响自然数的 “运算功能”
“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。
所以,“0”加盟到自然数集合实属理所当然,而不仅仅是人为的“规定”。它让我们更好地理解自然数和它的功能,同时也让我们意识到教学时不仅要知道和记住数学的“定义”和“规定”,还应该思考“规定”背后的数学涵义。
03
什么是有效数字一无效数字?
有效数字是对一个数的近似值的精确程度而提出的。同一个近似数如果在取舍时,保留的有效数字多,就比保留的有效数字少更精确。
一般说,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个非零的数字起,到那一位上的所有数字都叫做这个数的有效数字。
如近似数0.00309有三个有效数字:3、0、9;0.520也有三个有效字:5、2、0。
而0.00309中左边的三个零,0.520中左边的一个零,都叫做无效数字。
04
加法与减法、乘法与除法是否互为逆运算?
“加法与减法互为逆运算、乘法与除法互为逆运算”这似乎成了许多老师的口头禅,这其实是一种误解。例如:
加法“2+3=5”,其逆算为“5-2=3”,“5-3=2”。
故此,加法的逆运算只有减法;
减法“5-2=3”,其逆算有 “5-3=2”, “2+3=5”。
故此,减法的逆运算有减法和加法两种运算。
综上可知,只能说减法是加法的逆运算,而不能说加法与减法互为逆运算。
同理,也只能说除法是乘法的逆运算,而不能说乘法与除法互为逆运算。
05
为什么不写“倍”?
在学习“求一个数是另一个数的几倍”应用题时,很多小朋友会自然提出这样的疑问,如:“饲养小组养了12只小鸡,3只小鸭,小鸡的只数是小鸭的几倍?”为什么“12÷3=4”的后面不写“倍”呢?
我们首先应该肯定学生的质疑(学生有较强的解题规范意识)。但同时又该对学生说明:在解答应用题时,得数后面一般要写上的是数的单位名称
如:12只的“只”;8克的“克”。一个数只有带上单位名称,才能准确地表示出一个物体的多少、大小、长短、轻重等等。但是,“倍”不是单位名称,它表示两个数量之间的一种关系。例如,上面的计算结果“4”,表示12里面有4个3,就是12只小鸡是3只小鸭的4倍。
所以,在算式里不写“倍”,以免“倍”与单位名称发生混淆。
06
“倍”和“倍数”的区别
在第一学段我们学习了“倍的初步认识”,认识了概念“倍”,而在第二学段,我们又学习到“倍数”这个概念。那么,“倍”和“倍数”这两个词到底是不是一回事呢?这两个词之间有什么区别呢?
“倍”指的是数量关系,它建立在乘除法概念的基础上。例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,我们就说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。勿宁说,“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。
“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。
同时我们又看到,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。
07
“时”和“小时”有什么不同?怎样使用“时”和“小时”?
首先应该明确的是,〔小〕时并非国际时间单位。在1984年国务院发布的《关于我国统一法定计量单位的命令》中,把秒作为时间的基本单位,把非国际单位制的时间单位天(日)、〔小〕时、分作为辅助单位。
(注:〔〕里的字,在不致混淆的情况下,可以省略)。
这样,在我国范围内使用的法定时间单位就有:天(日)、〔小〕时、分、秒。
由此,“时”既可以表示时间,又可以表示时刻。由于“时间”和“时刻”这两个不同的概念容易产生混淆,在实际应用时间单位“时”时,现行教材作了如下处理:
7.1当列式计算出时间的长短时,在得数的括号里写上时间的单位“时”。例如:超市营业时间:21-9=12(时)。(此处可省略“小”字)
7.2在用语言表述时间的长短时,为避免“时间”和“时刻”这两个概念产生混淆,则在“时”的前面加上一个“小”字。例如:超市营业时间12小时。
7.3 在用语言表示时刻时,一律不得出现“小时”字样。例如:公园每天早上7时30分开园(而非7小时30分)。
08
“改写”和“省略”是一样的吗?
从形式上看,此例将“改写”与“省略”两种对数的变化置于了同一个要求之下(即改写成用“亿”作单位的数)。我们真希望编者不是有意而为之,因为“改写”与“省略”其本质是完全不同的。表现在:
8.1目的不同
“改写”的目的是方便对大数的读写,而“省略”则是取数的近似值。
8.2方法不同
此处的“改写”是去掉“亿”位后面的0,再写上一个“亿”字,而“省略”除了要找准“亿”位,还要考虑被省略的尾数的最高位是几,然后用四舍五入法求出近似数。
8.3符号不同
“改写”只改变了数的表现形式,大小并未改变,所以用“=”号连接;而“省略”既改变了数的形式,又改变的数的大小,所以用“≈”连接。
09
“路程”就是“距离”吗?
这两个词在许多老师的教学语言中是替代使用的,其实不然。
“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。
“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。
一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。
虽然老师们都知道这个等式是成立的,但我们的学生却没有相应的知识储备,怎样绕开”极限”寻找能为小学生所理解和接受的证明途径。
10
最大的分数单位是1/2还是1/1?
先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。
显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。
因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。
尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。
11
像 0/3、0.2/3、3/0.2这样的数是不是分数?
分数的定义明确告诉我们:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。其中,分成的份数叫做分数的分母,要表示的份数叫做分子。
由此可知,分数的分子和分母都应该是非零自然数。从这个意义来说,以上这几个数徒具分数的形式,而不具分数的实质,因此都不应该视为分数。
进而,在考查学生对“分数”涵义的理解时,应着眼于通常意义上的分数,将上述这些变异形式纳入思考的范围,其本身对训练学生的思维并无多大实际意义,而且会令诸如“分数都大于0”等命题的真与假陷入尴尬。
12
比6多1/2的数应该是“6+1/2”还是“6+(1+1/2)”
要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。
所以,“比6多1/2的数”应该是“6+1/2”。
当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。
13
计算出勤率可不可以不乘100%?
先来看看新人教版、北师大版和苏教版三个不同版本的教材对类似问题的理解。
同一课程标准下,不同的教材给出了不同的理解,这给执教者带来了困惑:到底可不可以不乘100%呢?笔者以为,求“××率”其结果必定为百分率。以出勤率为例,就是求实际出勤人数占应出勤人数的百分之几。
如果公式只写成:出勤率=实际出勤人数/应出勤人数,我们说这只是分数形式(也即是求实际出勤人数占应出勤人数的“几分之几”),并不是百分数。
因此,在公式后面乘上“100%”,既可以使计算数值大小不变,又能保证结果形式满足百分数的要求。因此,计算出勤率、发芽率、出粉率、合格率……的公式中,都应乘“100%”。
同时建议各版本教材的编委统一思想,以免给一线教师造成认识上的混乱。
14
小于90度的角都是锐角吗?
根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:0度的角是什么角,也是锐角吗?
事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。
由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。
15
足球比赛记分牌上的“3︰2”是数学中的“比”吗?
我们至少可以从两个方面来理解它们的差别。
第一,球类比赛中的“3︰2”表示的是比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为1.5。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。
第二,数学中的“比”是可以化简的,如“4︰2=2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。

Ⅲ 自然数的定义在小学几年级

自然数的定义在小学四年级

四年级数学第一单元《认识更大的数》就讲到了自然数的定义:

表示物体个数的1、2、3、4、5、6、7、8、9、10、11...都是自然数,一个物体也没有,用0表示,0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

自然数就是我们常说的正整数和0。整数包括自然数,所以自然数一定是整数,且一定是非负整数。

但相减和 相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数由0开始(包括0), 一个接一个,组成一个无穷集体。

自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

(3)小学数学自然数的概念扩展阅读:

自然数的应用:

1、自然数列在“数列”,有着最广泛的运用,因为所有的数列中,各项的序号都组成自然数列。

任何数列的通项公式都可以看作:数列各项的数与它的序号之间固定的数量关系。

2、求n条射线可以组成多少个角时,应用了自然数列的前n项和公式

第1条射线和其它射线组成n-1个角,第2条射线跟余下的其它射线组成n-2个角,依此类推得到式子

1+2+3+4+……+n-1=n(n-1)/2

3、求直线上有n个点,组成多少条线段时,也应该了自然数列的前n项和公式

第1个点和其它点组成n-1条线段,第2个点跟余下的其它点组成n-2条线段,依此类推同样可以得到式子

1+2+3+4+……+n-1=n(n-1)/2

Ⅳ 小学数学自然数的概念

自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所专表示的数属。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

线段(segment),技术制图中的一般规定术语,是指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线(ray)是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度(它无限长)。

(4)小学数学自然数的概念扩展阅读:

自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。

参考资料来源:

网络-自然数

网络-线段

网络-直线

网络-射线

Ⅳ 小学数学概念教学中涉及哪些概念

在数学学习中有很多重要的东西,包括概念、定理、性质、问题等,其中概念是一个非常重要的学习数学的载体,因此概念教学应该是我们数学教学中一个非常重要的基点,很多东西都是围绕着一个核心概念展开的,因此必须重视概念教学,之所以把概念教学放在一个非常显著的地位来强调,一个重要的原因就是在我们所接触的中学数学教学中,对于概念教学有不重视的倾向,很多的课是把概念用很短的时间交代一下,定义交代完后接着变成解题了,(把概念课变成了解题课了,造成对于概念理解的不足,造成走入用做题来学习数学的误区)

那么在中学数学教学中应当采取哪些方式来进行概念教学呢?首先要弄清楚目前教学的现状,在中学数学教学实际中,学生常常对第一个问题解决不好,思维受到障碍,特别是在中考、高考过程中,对综合问题的解决不够好,而问题的产生往往是对基础的概念理解不好造成的。

对于概念教学的不重视来自于两个方面,一方面老师不够重视,另一方面学生也不重视,而实际上一个新的概念的形成是从原来的知识领域又进入到一个新的知识领域,从而建立一个新的知识领域的过程,对新概念的理解常常是因为学生对新领域知识不够重视,导致后来学生不好的学习后果,然后再回去弥补,而这个时候的弥补,又感觉没有多少味道,从而造成误解的一直持续。这个问题必须引起教师的高度重视,否则教改学生的永远是夹生饭,不光不能促进学生的发展,还很有可能引起一系列的连锁反应,制约学生的发展。

而数学思想和数学最深刻的内涵实际上是通过数学概念反映出来的,但是从学生的表现来看,无论是考试、作业都是以习题的形式来完成的,结果造成对概念不重视(这是因为训练形式的原因造成的,能否改变训练和评价的形式是一个很大、也很重要的课题),而单纯依靠大量的做题来弥补对概念理解的不足,造成学习效率不高,老师和学生都很疲劳,这是一个得不偿失的过程,而相反,如果一个概念比较清楚的话,就能够对题目或问题有一个清楚的认识,现实的情况是,概念用几分钟的时间呈现,然后靠大量的题来弥补。

概念教学中存在的几个问题:

1.概念很多,有一些我们认为是重要的概念,有一些我们认为是不重要的概念,衡量的标准是什么?其实很大程度上是教师人为造成的,教师以自己的喜好或者考察的重点上确定的,而不是从知识的完整和知识体系的完备考虑的,更谈不上考虑学生的实际了。

2.有一些概念不那么重要,一个重要的理念就是要学会识别在我们的**常教学中什么是重要的概念。所谓重要的概念就是围绕着核心的概念、能反映数学本质的概念,如何判断那一个概念是重要的,是教师必须考虑的第一个问题,出现一次或偶尔出现的概念肯定不那么重要,在学习中经常或不断出现的那一定是重要的概念,比如函数、单调性等概念以及对运算的理解。

对于一个老师来说,对于概念课,他首先要整体上把握概念在整个数学上的地位或在某一个领域中的地位,比如单调性,首先从图像上它刻画了函数的变化,反映了函数的极值问题,对应着反函数的问题(在这个问题中,只有在连续的情况下才能保持定义域和值域之间的一一对应关系),再比如,求函数零点的唯一性问题、解不等式也可以利用单调性来处理),对老师而言,虽然这堂课不是讲这个内容,但是一定要在心理上有一个整体的把握,这样才能比较好地处理这堂课的内容。学习函数的单调性,在高中阶段是一掌握函数图形的形状为主,单调上升、单调下降,基本上就把函数的形状确定了,极值问题也是由单调性确定的,以后学习的问题都是对这一问题的延伸,凡是重要的数学概念,一定要思考它在整个高中数学课程中的扮演一个什么角色,以及与其他的要学习的数学内容的内在联系,才能在一节课中有一个重要的定位,从整体到局部,再从局部到整体,来开展备课活动,备课才是有效的。但一定要把握好一个度,要清楚需要讲到什么程度,要有一个全盘的考虑,要考虑前引后联,防止一步到位,要明确第一堂课做什么,后面做什么.如果是单调性的起始课,要建立单调性的概念,帮助学生理解处理单调性函数的基本程序,还有足够的时间和载体来考虑证明的问题,定位的问题实在重要概念教学中需要考虑的重要问题,要弄清楚在这一节课中要以什么样的定位为主。

要求老师做到比较深入地研究学生了学生关于单调性的认知过程,将学生的认知过程分为几个阶段:概念的形成、概念的理解和概念的拓展,根据学生的认知特点,设计了问题串,通过这些问题,逐步引导学生按照自己的认知习惯、认知规律来建立比较合理、简单的概念的认识,从具体的函数出发,从学生的认知水平和具体的东西出发,给学生营造一个直观上是容易的印象,逐渐把它落实到文本上,在这个过程中把概念中蕴含的丰富的数学思想展现出来,从熟悉的问题中去挖掘、用好它,然后再去学习新东西,不仅仅是为了得到新概念,更重要的是体现了一种思想方法,层次感就出来了,是一种归纳式的思维,这非常重要,数学高度抽象,但是归纳的结果。

问题是数学的心脏,要重视培养学生的问题意识,上课前老师带着学生老师的安排去读书,通过认真阅读教材,理解和发现问题、提出问题,上课时师生交流,师生共同解决问题,在这个过程中,培养了学生学习的能力。但是教师在进行问题设计时,必须分清楚哪些是主要问题,哪些是次要问题,哪些是比较集中的问题,哪些是比较分散的问题,哪些是共性的问题,哪些是个别的问题?在单调性的概念中,“任意”和“区间”就是本质的东西,任意说明的是其特征,区间限定的是研究范围,它是定义域的一个子集,这些都是必须高度重视的重要问题,但有一些是次要的,比如,学生会提出问题,为什么有的是开区间,有的是闭区间?实际上这就是一个次要问题,开闭对单调性是没有影响的,它只涉及一个严格单调和非严格单调的问题,对研究函数的整体性质没有多大影响,因此不应当在此处进行过多的争论。因此,如何把握问题,是老师必须引起关注的问题。

通过学生主动参与,可以充分了解学生的思维习惯对于培养学生数学学习方法和学习意识、学习能力极其重要,这是一个教师的思维走进学生思维的重要途径。它体现的是一种全新的教育理念或者称为学习理念,展现的是以学生为主体的思想,是一种承认差异基础上的尊重。

在对学生提出的问题在回答的过程中,教师不应当以裁判的角色参与,不应当以一种权威的方式告知学生结果是什么,而应当让学生充分展示自己的思维,教师帮助学生诊断,找出症结,同时也给其他学生一个更深思考的机会和空间,因为,学生的思维往往是相通的,很多时候,老师往往以自己的思维习惯左右学生的思维习惯,是一种“我认为他应该能……”的想当然的行为,这就是为什么有的问题老师讲解十遍二十遍学生仍然不会,而同学只要讲一遍就明白的重要原因。教师的作用更多的是引和导。在学生思考的过程中,不要急于进行,应当学会等待,在等待中发现教育素材,便于教师展示教育智慧。这有利于培养学生的思维意识和学习意识,培养学生的实践和创新能力,使学生在探究的过程中获得发展。合作学习的关键是教师的设计,教师教学设计的好坏直接影响教学的效果,因此必须弄清楚教学任务、教学目标、合作方式、需要解决的问题、可能遇到的问题等都是老师必须事先考虑的问题,老师要注意在合作学习的过程中必须发挥统帅作用,不能任由学生信马由缰、自由驰骋,而应当控制在既定方针之下,这样的合作才是有效的合作。

Ⅵ 小学阶段的所有概念(数学)

代数知识:
整数:
质数
一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。
合数
一个数除了1和它本身,还有别的约数,这个数叫做合数
注意:1只有一个约数,就是它本身,1既不是质数,也不是合数。
最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。
3、偶数
偶数就是可以被2整除的自然数(包括0)也叫做双数。偶数通常用“2k”表示。
4、奇数
奇数就是不能被2整除的自然数,也叫做单数。奇数通常用2k+1表示

注:偶数除了2以外都是合数。偶数:能被2整除的数。(也包括0)
奇数:不能被2整除的数。
自然数:表示物体的数量的数,最小的自然数是“0”
自然数也是整数。0是正整数与负整数的分界线。
合数:除了“1”和它本身以外还有别的约数的数。最小的合数“4”。
质数:只有“1”和它本身两个约数的数。最小的质数是“2”。
“1”既不是合数也不是质数
互质数:只有公约数“1”的两个数。
公约数:两个数公有的约数。
公倍数:两个数公有的倍数。
质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。
分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。
能被2整除数的特征:个位上的数字是0,2,4,6,8
能被3整除数的特征:各位上的数字之和是3的倍数
能被5整除数的特征:个位上的数字是0,5
能被9整除数的特征:各位上的数字之和是9的倍数.
能被4或25整除数的特征:末两位上的数是4或25的倍数.
能被8或125整除数的特征:末三位数是8或125的倍数.

小数:
小数的基本性质:在小数末尾添上”0”或去掉”0”,小数的大小不变.
有限小数:小数部分的位数是有限的。
无限小数:小数部分的为数是无限的。` 无限循环小数:小数部分的数位有规律的.
无限不循环小数:小数部分没规律(又叫无理数)
纯循环小数:从小数部分第一位开始循环`
混循环小数:不是从小数部分第一位开始循环
循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.

分数
分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.
分数的基本性质:分数的分子和分母同时乘或除以一个数(0除外).分数的大小不变.

真分数<1. 假分数≥1
将一个分数的分子与分母同时同时除以他们的最大公因数,这个过程叫约分.而得到的这个分数叫最简分数.
最简分数:分母与分子互质的时候.这个分数就叫最简分数.
将几个异分母的分数利用分数的基本性质将分母变成一样.这个过程叫通分.在分数大小的比较中会广泛遇到通分.

几何知识:
一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.
一个物体所占平面的大小叫做这个物体的面积.
一个物体所占空间的大小叫做这个物体的体积.
一个物体所能容纳别的物体的体积叫做这个物体的容积
一个物体表面的面积叫表面积
三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.
外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,
任何封闭式的图形的外角和都是360度
线:
直线:没有端点,没有长度,无限延长
射线:有一个端点,没有长度,无限延长
线段:有两个端点,有长度.
由一个点引出的两条射线,这两条射线所夹的这个部分叫做角,而那个点叫做顶点.角分为几种角:锐角(大于0度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)
由1点做一条线段的垂线,这个点叫做垂足.
当两条直线永远不相交时,就说明这两条直线互相平行.
平面图形:
三角形:
三角形中最大的角是钝角的话这个三角形叫钝角三角形.
三角形中最大的角是直角的话这个三角形叫直角三角形
三角形中最大的角是锐角的话这个三角形叫锐角三角形
从顶点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.
当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是特殊的等腰三角形.他的3个角都是60度.
四边形:
一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.
当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).
只有一组对边互相平行时,这个图形叫梯形.梯形上面那条边叫上底.下面那条边叫下底.而梯形的左右两条边叫梯形的腰.
当左右两条边的长度相等时.这个梯形叫等腰梯形.
圆的周长与直径的比值始终是定植.人们把他叫做圆周率.圆周率一般用字母π表示.π≈3.14.
立体图形:
长方体与正方体有6个面,12条菱,8个顶点
另外还有圆柱圆锥圆台.这里我就不介绍了,毕竟是个很深奥的话题.以后中学就要重点学习立体几何了.

Ⅶ 小学数学什么叫自然数

自然数不是一个严格的数学概念,有歧义.通常是指"由数数产生的数".有的人专或教科书认为,自然数就属是正整数,现在的课程改革以前就是这样规定的.而现在的教科书就规定自然数包括:零和正整数.
但是正整数,零和负整数,则是没有歧义的,严格的数学概念.
要说解决办法,只能是:服从教科书,自然数是指"零和正整数".
希望今后写教科书的人,不要挑起混乱了.要知道人在数数的时候,没有从0开始数的.除开特意要从0开始.
简单来说就是大于、等于0的整数

Ⅷ 小学数学中我们学过的自然数最小的数是谁它表示什么意义

在很久以前的人教版数学书中,最小的自然数是“1”。
但是课改以回后我们的教科书中规定,答最小的自然数是“0”。现在一直在延续,“0”是最小的自然数。
“0”的意义:
小学课本里说,用“0”来表示一个也没有。
中学课本里说,“0”不仅仅表示一个也没有,它还是正数和负数的分界线。
谢谢采纳!需要解释可以追问。

Ⅸ 小学数学什么叫自然数

自然数不是一个严格的数学概念,有歧义.通常是指"由数数产生的数".有的人或教科专书认为,自然数就是属正整数,现在的课程改革以前就是这样规定的.而现在的教科书就规定自然数包括:零和正整数.
但是正整数,零和负整数,则是没有歧义的,严格的数学概念.
要说解决办法,只能是:服从教科书,自然数是指"零和正整数".
希望今后写教科书的人,不要挑起混乱了.要知道人在数数的时候,没有从0开始数的.除开特意要从0开始.
简单来说就是大于、等于0的整数

阅读全文

与小学数学自然数的概念相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99