㈠ 如何培养小学生数学的计算思维
《小学数学教学大纲》明确指出:“应该要求学生能正确、迅速地计算,并注意计算方法的合理性和灵活性。”因此,培养和提高小学生的计算思维能力是小学数学教学的主要任务之一。现就如何培养小学生数学计算思维能力,我谈谈自已的看法:
一、逐步认识学生的计算能力与学生思维发展水平的必然联系
学生的计算能力与学生思维发展水平是直接联系的运算过程。实质上是学生在理解数学基本知识的基础上运用概念去分析、判断、推理的过程。
过去,我们在教学时,往往重结果,轻思维,淡化和忽视了学生思维能力地培养,现在我们应重视思维过程,教师要设法把过去的方法模仿转移到解题时的思维模仿上来,从而搞好学生的思维训练。
因此,运算过程就反映了运算思维能力的几种因素,即:运算的理解能力、运用法则、掌握规律的能力、逻辑推理的能力和空间想像的能力、创造能力等。
二、启发学生在思考计算方法的时候,培养学生的思维能力
1、发散思维是从同一问题出发,从不同角度进行思考,从而探求问题解决的不同途径的思维过程和方法。这种思维是在思维发散的实践中锻炼和培养起来的,发散思维要充分发挥人的想像力,突破原来的知识圈,在解决问题中提出多方面的设想或多解决方法。
比如,在学会“乘法的意义”后,我出了这样一道题:20+20+8+20+20+ 20=()要求学生用简便方法计算,经过思考学生提出了自已的算法,有以下几种:
①20×2+8+20×3=108
②20×5+8=108
③20×6-12=108
④20×4+20+8=108
显然,学生的多种设想,突破了原来的知识圈,正确地解答了问题,思维能力得到了锻炼。
2、充分挖掘教材功能,培养学生创造性思维能力。创造性思维就是创造性人才的智力因素,是创造活动的灵魂,是创造力的核心,是一种主动地发现新问题、提出新见解的具有创见的思维形式。
培养学生创造性思维能力,教材是根本,教师要挖掘其功能,训练学生的逆向、发散联想、直觉等思维,从而提高创造能力。
如在进行梯形教学时,要让学生实现实物与教具的演示和学生动手操作的活动,让学生运用多种感官参与认识活动,清晰地理解有关梯形的知识。
三、组织学生进行重点练习和“变式”练习,对典型问题可进行讨论、交流,培养计算技能和掌握计算技巧
1、在重点题熟练掌握的基础上,要组织学生进行“变式”练习,通过练习,既可以巩固新学知识,又可以培养和发展学生良好的思思维品质。在练习中,要善于练得得当,不在于练得多少,要练在关键处,要学会“善练”。
2、对典型的问题,要让学生踊跃发表见解,敢于讲出自己的观点。这样,在教师启发下、学生争论中,重点问题、易混淆问题、易忽视的问题才会通过争论得到明确答案,学生的思维能力、概括能力才会有极大地提高。
实践证明,小学生计算思维能力的培养不是一朝一夕的事情,只要师生共同努力,善于探求学习的捷径和规律,学生的能力就会早日提高。
㈡ 如何培养小学生数学概念理解能力
如何培养小学生数学概念理解能力
数学课堂教学中,我们教师经常会遇到这样的情况:当教师要求学生描述概念的定义时,他们往往能够给予流利而圆满的回答,但却经常不能正确地运用它们解决有关问题。笔者在教学实践中,也遇到了类似的情况,比如在学习二次函数的时候能准确说出解析式的几种形式,但在具体的题目中却不能灵活使用哪一种解析式解题,不会用数形结合的方法画草图分析。学生正确而流利的回答恰恰掩盖了他们并不理解的本质,这种现象在中学数学教学实践中比比皆是,我们称之为肤浅理解。究其原因,笔者认为,大多数学生是因为对数学概念、定理、法则等的本质内涵根本不理解或理解不深刻,一味地死记硬背、套题型做习题。这与教师在教学过程中过多注重“举一反一”“高密度训练”,忽视学生对数学知识的深刻理解有一定的关系。本文针对上述所列问题,进行深人分析,谈谈促进初中生数学认知理解的几条措施。
一、运用多种方式,为学生提供丰富的感性材料
数学概念、性质、定理等具有高度的抽象性和概括性,如果让初中生直接理解,肯定会存在很大困难,所以在数学教学中,教师应该为学生提供一些实物、模型、教具、教学软件等丰富的数学学习材料,让学生有充分的时间对具体事物进行操作,使他们获得学习新知识所需要的具体经验,通过自己的思维活动来形成对概念的理解,而不是通过机械的重复,记住教师所讲述的那些关于概念的现成解释,这样学生所获得的知识才是全面的、清晰的、牢固的。在教学过程中,可以采取以下措施:
1、让学生动手操作
例如,在讲授判定三角形全等的边角边公理时,就可以先让每个学生利用直尺和量角器在白纸上作一个△abc,使 =60,ab=5cm,bc=3cm,并用剪刀剪下此三角形,然后与其他同学所作三角形进行对照,看看能否重合,这时学生们会发现是能够重合的,接下来让学生改变角度和长度大小再剪三角形,并进行再对照,这样学生自然会发现每次所作三角形都能够完全重合。此时,教师再启发学生,总结出:如果两个三角形两边及其夹角分别相等,则这两个三角形全等,即边角边定理。这种教学方式,既活跃了课堂气氛,激发了学生的学习兴趣,又使抽象的数学知识蕴于简单实验之中,使学生易于接受新知识。
2、图文并茂
例如,解一元一次不等式组是中学数学中的一个难点,在教学过程中,教师可设计图1图4的复合幻灯片,教师结合图片,逐一进行分析、概括,这样学生对一元一次不等式组的解就会有一个清晰的认识.
3、利用现代化多媒体技术
例如,在讲“图形的相似”一节时,可以运用计算机辅助教学,制作两幅比例尺寸不同中国地图,从中找出长沙,武汉,上海这三个地方,连接这三个点构造三角形,再通过比例尺计算对应边的长度来发现相似图形的性质。学生感到很容易理解。通过这种方式,使得抽象的数学概念成为看得见、摸得着的东西,从而内化到学生的知识结构中,从而取得较好的教学实效。
应用现代化教学手段,可以使教学中“死”的图形“动”起来,把“死”的书本知识“活”起来,它可以为学生提供生动、直观的材料,从而开阔了视野,拓展了知识结构。
二、巧设问题情境
在设置问题情境时,可以从以下几个方面人手:
1、让学生知道自己将要学到什么
它是使学生自觉参与学习的最好“诱惑”。例如,对于运用公式法分解因式的第一节课—平方差公式,教师可以这样来创设问题情境 师:在一次智力竞赛中,主持人提供了1道题“2009 -2008 =”主持人话音刚落,就立刻有一个学生刷地站起来抢答说:“等于4017,”该学生回答的速度之快,给人以不假思索之感。同学们,你们知道他是如何计一算的吗?
这时,学生们开始沉默,思考这个问题,但始终没有得出什么结论……
师:今天,学了平方差公式,我们就可以揭开这个谜底,这样创设问题情境,就使学生产生了“我也要成为他那样的快速抢答者”的渴望,从而积极投入到学习中去。
2、构造认知冲突
当新的学习与学生 原有的知识水平之间产生认知冲突时,这种冲突就会成为诱发和促进学生思维发展的动力,使他们产生弥补“心理缺口”的愿望。例如,在“线段的垂直平分线”的教学中,教师可以这样创设问题情境:
如图5所示,有a,b, c3个村庄。现在要为它们开凿一口井p ,使得p 到a,b, c的距离都相等。那么p应该设在哪里呢?
然后教师用3条橡皮筋一端系在一起作为p 点,另一端分别固定在a,b, c3点。教师一边移动点p,一边向:“pa,pb,pc的长度相等吗?”几次尝试之后,学生们会认为,单靠观察是不准确的,用测量的方法也不可行。这时,教师再指出:“只要我们掌握了线段的垂直平分线的知识,这个问题易如反掌。”这时,学生已产生了心理缺口-----—如何准确地确定点p的位置呢?这样,学生就会积极地投人到新知识的学习中去。
3、问题情境是学生熟悉的
在设置问题情境时,最好是从学生熟悉的生活情境和生产实际的角度出发,这样才能保证学生有相关的观念来理解问题,也才有可能使学生主动积极地建构他们的数学认知结构。例如,数学教师在讲合并同类项时,可以这样引人新课:某个体饲养员要卖一批鸡、鸭、鹅,其中a是鸡的价格,b是肉的价格,c是鱼的价格,他在账本上记下了一只鸡3.5千克、一块肉4千克、一条鱼5.5千克,又记下一只鸡3千克、一块肉1. 8干克、一条鱼2.8千克……卖得的总钱数是3. 5a+4b+5.5c+3a +1.8b+2.8c,请问怎样算最简便?通过这一实际问题的解决,很自然地就导出了合并同类项的原理。这样讲课不仅生动形象,易于理解,而且也会让学生感受到课堂上所学的数学知识很贴近现实生活,从而提高了知识的价值感。
三、注重变式的应用
1、通过非标准变式,突出概念的本质属性
在概念的对象集合中,尽管从逻辑的角度看,每个对象都是等价的,但实际上,它们在学生的概念系统中的地位并不相同。这是因为,其中一些对象由于其拥有“标准的”形式、或者受到学生感性经验的影响等而成为所谓的标准形。标准形虽然有利于学生对概念的准确把握,但也容易限制学生的思维,从而人为地缩小概念的外延,使得学生不能透彻地理解概念。解决这个问题的方法之一就是充分利用非标准形:通过变换概念的非本质属性,突出其本质属性。
在几何教学中,许多教师往往用最常见、学生最熟悉的图形进行教学,有的学生理解了,可以以不变应万变,但有的学生却受到这种“标准图形”的制约而产生理解困难,因此,在几何教学中,注重图形的多样化,即:图形的形状、放置方式有多种变化,可以让学生较快的形成正确的表象,拓宽学生的视野,不会局限于一种“标准形”。例如,在讲解垂直、三角形的高和平行四边形时,可以采用标准形与非标准形的比较,来帮助学生理解。
2、通过概念变式与非概念变式的比较,明确概念的外延
数学概念通常都不是孤立的,而是存在于一个由多种概念组成的概念体系之中,因此,要明确概念的外延就必须分清概念与其相关概念之间的关系,这是理解概念的前提。我们可以利用所谓的“非概念变式”,如,平面几何中的非概念图形,通过非概念变式与概念变式的比较,来帮助学生理解概念的本质属性。
非概念变式的形式有很多种,其中常用的有“反例变式”,也就是我们平时所说的概念的反例,由于反例具有鲜明的直观特征,容易引起学生的注意,也易于为学生所接受,因此,反例教学是促进学生深刻理解的有效方法之一。例如,在学习菱形时,对角线互相垂直是其重要性质,但很多学生会错误地认为,对角线互相垂直的四边形就是菱形,这时教师就可以利用图6的反例图形来帮助学生澄清错误观念,透彻地理解菱形的性质。
四、引导学生对所学知识进行总结
学习数学不能将知识孤立起来、割裂开来,应注意数学知识之间的“横向”和“纵向”的联系。在数学教学中,教师要引导学生对所学知识进行归纳总结。
1、纵向总结
在学完每单元、每章知识之后,引导学生归纳整理所学知识间的内在联系、逻辑顺序、主从地位及解题技能、技巧方面的结构;在复习时要注意对所学数学思想、方法进行归纳、概括,让学生试写这方面的学习体会或写出一章的小节。当然对知识进行归纳、整理,并不是罗列所学过的定义、定理、法则等,而是建立知识间的内在联系与区别。通过绘制知识结构框图,知识之间的关系从图中一目了然,这样可以帮助学生形成良好的认知结构。
2、横向总结
横向总结就是要把分散在各个单元的知识内容,但又是解决同一类问题的各种知识与方法系统地贯通、串联起来,这样可以为解决同一类问题提供多种方法。例如,证明两条直线垂直,可利用以下方法:垂直定义,等腰三角形三线合一定理,直角三角形的判定和性质定理,正方形、矩形、菱形的有关性质(正方形、矩形的四个角都是直角,正方形、菱形的对角线互相垂直),三角形的垂心性质等。教师在教学过程中,要善于利用时机有意识地锻炼学生,使他们的认知结构逐步完善。
五、注重数学交流,提高学生的数学语言表达能力
1、加强图形,符号和文字之间互译的训练
数学概念、定理、公式、法则等往往是只用某一种数学语言表述的,而学生要真正理解、掌握和运用它们,则必须能灵活运用三种数学语言(文字语言、图形语言、符号语言)进行表述。例如,几何中的定理均是用文字语言表述的,但证题时的论证需借助于符号语言表达,而其间图形语言作为文字语言和符号语言的补充,为数学思维提供了直观模型。所以,应在几何教学中做好三种语言的沟通和互译。
2、开展小组合作学习
在课堂上,教师要适当地改变教学组织形式,开展小组合作学习,为学生提供一个宽松自由的学习环境,使他们在学习过程中有充分的独立空间。小组内交流要为每一个学生提供一个平等参与的机会,使学生在独立思考的基础上与他人合作,彼此交流、倾听、解释,思考他人的观点以及自己进行反思,经过这一过程使原来模糊的认识得到澄清。在小组学习中,教师要充分发挥其引导作用,这就要求教师做到以下几点:首先,要设计出学生感兴趣的问题,学生在求解问题时,要动手、动脑,要全身心的投人,要与其他同学合作,否则无法完成;其次,教师要积极巡视和掌握学生讨论的动向,对学生的各种不同意见作进一步的比较与评价,引导学生发现各种解答可能存在的逻辑关系;第三,教师还要启发鼓励那些不善于讲话、成绩落后的学生大胆开口讲话,发表自己的见解。
学生对数学概念理解与消化与否,在于教师的课堂教学中慢慢渗透,非一朝一夕之功,只有使用多种方法,多种形式,多种手段,多管齐下,充分调动学生的积极性,才能取得最佳教学效果的。
㈢ 怎样培养创新思维
要培养创新思维的话,就我所掌握的知识而言,我认为要让自身时刻跟随时代潮流,不放松对新事物的观察。只有先掌握了这些,才能培养创新思维。
2、想象截留法,想象包括了梦想、联想、幻想等等,想象力是一切创造的原动力,有时候,一个好想法在我们大脑中转瞬即逝,我们应该马上拿起笔把它记下来,然后再去评估它的价值,长期以往,定有回响。
3、角色互换法,就是站在对方立场上去思考的一种方法,为什么我们常常被小说、电视剧的故事情节及主人公的行为所感动呢?是因为我们无意中把自己放进了故事中,把自己假想为主人公了。如果你是销售员,请你假想一下如果自己是顾客,会有什么需求,如果你是老师,你可以把自己当成学生,想象一下自己渴望老师做些什么。
以上就是培养创新思维的方法,有了创新思维之后,也要努力实践,让知行合一,才能激发出更好的灵感。
㈣ 小学四年级数学下册黄冈60页技巧与变式第五题怎样做你
具体是什么题目呀,你好像没有上传到题目,建议再上传一次题目,毕竟有题目大家才能更好地帮助你,不是每个人都有这本书的。有图可以更快找到答案哟,不会可以追问,答题不易满意望采纳。
㈤ 小学数学教学如何运用变式和迁移进行教学
一、 创设情境激发迁移意识
一种学习对另一种学习的影响,就叫学习的迁移。从认知心理学的观点看,无论在接受学习新知识或解决新问题的过程中,凡是有已形成的相关的认知结构就会产生知识、乃至方法的迁移 。而这些需要老师有意识地加以引导才会实现 。教学北师大版四年级下册的《小数的意义》一课时,我先创设一个生活情境:有一天淘气跟着妈妈到菜市场买菜,他发现一斤肉9.90元,一斤白菜2.20元,一斤地瓜2.35元。(投放到大屏幕上) 指名说说这些价格是几元几角几分,学生很快就能说出答案,因为这是从学生的生活经验中迁移过来的。接着让学生说说淘气妈妈买了这三样东西一共需要多少钱,为什么这样算?学生也基本上能比较快地算出,也懂得相同数位进行相加减的道理,因为这是从学生的知识经验中迁移过来的。最后让学生说说每个数里面的数位名称,学生一时语塞,老师顺势引导,这是本节课要学的内容,相信同学们联系以前学过的圆角分的知识会很快学会的。出示题目:1元=( )角 ,1元=( )分 1角=( )元 1分=( )元。本题由易及难,引导学生发现数的规律,新知与旧知是紧密联系在一起的,从而轻而易举地理解一角就是十分之一元,也就是0.1元,一分是一百分之一元,就是0.01元。最后回到前面的情境中,9.90元第一个9表示9元,是整数部分,第二个9表示的是9角,在小数点右边第一位,是十分之九元,0.9元,这一位叫做十分位,表示把一个数平均分成十分,取其中的几份,就是零点几,接着让学生说说2.35元每一个数位名称及数位上数字表示的意义,然后追问小数点右边第三位是什么位,表示什么,学生很快就能说出答案。这样再让学生打开书本自学小数数位顺序表,教学效果达到事半功倍的作用。一学年来我从情境创设中不断让学生体会学习迁移的重要性,激发他们主动寻找迁移的知识点和生长点。
二、引导自主学习培养迁移能力
小学数学新的课程标准要求教师切实转变教学观念,使数学课堂成为学生自主学习的乐园,让学生主动参与到数学活动中,自己去获取、巩固和深化知识,扎扎实实激发学生创新意识,培养学生创新思维和创新能力,而迁移能力就是一种创新能力。
教学中以导为主,以讲为辅
著名心理学家皮亚杰说过:儿童学习的最根本途径应该是活动,活动是认识发展的直接源泉。所以教学中我充分调动学生的眼口手脑等多种感官参与活动。例如教学四年级下册《文具店》(小数乘法)一课时,我让学生们在课堂上吆喝起来,卖铅笔啦,一把0.3元,尺子一把0.4元,转笔刀一个0.6元,同学们纷纷表示要买,我让学生自主选择要什么,买多少,需要付多少钱,算对了直接写上答案找老师领物品(模型),学生兴致勃勃,计算正确率特别高。本节课学生虽然初步接触小数乘法,但深谙整数乘法的意义,再加上有趣的数学活动,学生对求几个相同的小数用乘法计算理解得非常透彻。
鼓励质疑,调动主体意识
问题是学生主动学习的最初源泉,是点燃学生思维的火花,是学生保持探索的动力,正如古人云:学起于思,思源于疑。教学中,我根据学生的认知规律以及心理特征巧妙制造悬念,诱发学生学习兴趣,大胆质疑,积极讨论,充分地调动学习主动性,从而更深刻地认识到自己是学习的主体。例如我在教学四年级下册《谁打电话的时间长》(除数是小数的除法)时,我先问学生两个人在打电话,一个打到安海,一个打到贵州,通话时间一样长,谁的电话费多?让学生了解长途电话比短途电话贵得多这个事实。接下来抛出问题:小红和小华一起去公共电话亭打电话,小红打国内电话,每分钟0.7元,她花了8.54元,小华打国际电话,每分钟7.2元,他花了45元,你们知道谁打电话的时间长?先让学生猜测并谈谈理由,有的说小红打的时间长,因为她的电话费便宜,有的说小华打的时间长,因为他花的钱多。真是公说公有理婆说婆有理,最后还是得用事实数据来证明——计算。怎么算?请两个同学(中等生)在黑板上算,其他同学做在本子上,之后继续讨论。板演的两种答案分别是:8.54÷0.7=1.22(分) 45÷7.2=0.625(分) ̄;8.54÷0.7=12.2(分)45÷7.2=6.25(分)谁的答案才是正确的呢?学生一脸疑惑,我因势利导,说:大家想一想怎样验证谁的答案才是正确的呢?整数除法的验算方法派上用场了,学生马上把这种方法迁移过来,“用商乘以除数看是否等于被除数”学生脱口而出,接下来又是一番的计算,找到正确答案,可是这又跟商的小数点要跟被除数的小数点对齐互相矛盾(观察除法竖式),学生的思维在这里又产生碰撞,又一阵叽叽喳喳,这时我提醒学生翻开书本看看智慧爷爷解决问题的方法,学生恍然大悟,把除数先化成整数,再把被除数扩大相同的倍数,这是上学期刚学过的商不变性质,学习迁移在这里起到拨乱反正的作用。至此学生对于除数是小数的除法的计算方法牢记在心,后面的课堂练习进行
㈥ 小学四年级数学下册黄冈60页技巧与变式第五题怎样做
量太多,小学四年级的数学下册这个面试与技巧的话,第五题你可以在嗯微信群里面再问。
㈦ 如何进行小学数学应用题的思维训练与能力培养
你好,应用题对孩子综合能力要求比较高:
1、首先要求孩子要能读懂题内意,阅读理解能力必容须要培养;
2、理解题意还要能将公式定理、数字和题意结合,做出列式解答;
3、解答过程中,还要要求计算不出错,对孩子计算能力也是种考验。
所以,如果孩子应用题做得不好,建议参考这几点,对照孩子哪里有不足,加强练习即可。
㈧ 小学五年级下册数学第三单元哪些是公式和变式
小学数学5年级下册
第一单元,图形的变换,没公式
第二单元,因数和倍数,没公式
第一单元,长方体和正方体,公式:
正方体:表面积=棱长×棱长×6
体积=棱长×棱长×棱长
长方体:表面积=(长×宽+长×高+宽×高)×2
体积=长×宽×高
第四单元,分数的意义和性质,性质公式:
b/a=(b×c)/(a×c)=(b÷d)/(a÷d) (c,d均不等于0)
第五单元,分数的加法和减法,公式是:
b/a+c/a=(b+c)/a
b/a-c/a=(b-c)/a
第六单元,统计,公式
平均数=(a1+a2+a3++an)÷n