导航:首页 > 小学学科 > 小学5年级数学重点

小学5年级数学重点

发布时间:2020-12-29 23:45:46

小学五年级数学复习

五年级数学基础知识复习资料 更多相关文章 相关课件 (一)整数
1、自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
7、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有最大的倍数。
9、个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
10、个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
11、一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
12、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
13、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
15、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
16、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
17、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7
18、几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
19、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
20、1和任何自然数互质。 相邻的两个自然数互质。两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
21、如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
22、如果两个数是互质数,它们的最大公因数就是1。
23、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
24、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
25、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
(三)分数
1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)求最大公因数和最小公倍数的方法
例题:求20和45的公因数和最大公因数
方法一列举法(通用):20的因数: 1、20、2、10、4、5;45的因数: 1、45、3、15、5、9,所以20和45的公因数是:1、5;
20和45的最大公因数:5
方法二:短除法(运用短除法,要除到商的公因数只有1时为止。)
5|20 45
4 9
所以20和45的最大公因数是2×2×3=12
求出12和30的最小公倍数。
方法一:12的倍数有:12,24,36,48,60,72……; 30的倍数有:30,60,90,120……
12和30的最小公倍数是60。
方法二:用短除法:(运用短除法,要除到商的公因数只有1时为止。)
2|12 30
3|6 15
2 5
12和30的最小公倍数是2×3×2×5=60。
(五) 约分和通分
1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
三 性质和规律
1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
3、小数点位置的移动引起小数大小的变化
(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
(3)小数点向左移或者向右移位数不够时,要用“0"补足位。
(五)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(六)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。
四 运算的意义
(一)整数四则运算
加数+加数=和
一个加数=和-另一个加数
被减数-减数=差
被减数=减数+差
减数=被减数-差
一个因数× 一个因数 =积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
(四)运算定律
1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
(五)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。
一. 教学内容:
总复习(一)

教学目标:
1. 系统本册教材的1-3单元的内容;
2. 复习小数乘除法的意义及计算方法,逐步提高小数乘除法计算的正确率;
3. 巩固复习四则混合运算的运算顺序,灵活地运用运算定律进行小数四则运算及简算;
4. 巩固复习多边形面积公式,并能运用公式正确求平面图形的面积及灵活地解决实际问题。

二. 重点、难点
1. 正确灵活地进行四则混合运算及简算;
2. 正确灵活地运用平面图形的面积公式进行平面图形的面积的计算及解决实际问题。

本周教学内容的知识概况
本册教材1-3单元内容:
1. 分数乘除法的意义;
2. 分数乘除法的计算法则;
3. 四则混合运算
4. 平面图形

总复习过程:
(一)小数乘除法的意义及法则
1. 小数乘法意义:
小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。
一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。
2. 小数除法的意义
小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例: 表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。

(二)小数乘除法的计算法则
1. 小数乘法法则:
(1)先按照整数乘法的法则计算;
(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
2. 小数除法法则:
(1)先按照整数除法的法则去除;
(2)商的小数点和被除数的小数点对齐;
(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。

第二章 度量衡
(一) 长度常用单位
* 千米(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)
(三) 单位之间的换算
1厘米 =10 毫米 *1分米 =10 厘米 * 1米 =10分米毫米 * 1千米 =1000 米
二 面积 (面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位
* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米
(三)面积单位的换算
* 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米
* 1公倾 =10000 平方米 * 1平方公里 =100 公顷
三、质量
(一)什么是质量
质量,就是表示表示物体有多重。
(二)常用单位
* 吨 t * 千克 kg * 克 g
(三)常用换算
* 一吨=1000千克
* 1千克=1000克
五 时间
(一)什么是时间
是指有起点和终点的一段时间
(二)常用单位
世纪、 年 、 月 、 日 、时 、 分、 秒
(三)单位换算
* 1世纪=100年
* 1年=365天 平年
* 一年=366天 闰年
* 一、三、五、七、八、十、十二是大月 大月有31 天
* 四、六、九、十一是小月小月 小月有30天
* 平年2月有28天 闰年2月有29天
* 1天= 24小时
* 1小时=60分
* 一分=60秒
第三章 代数初步知识
一、用字母表示数
1 用字母表示数的意义和作用
* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式
(1)常见的数量关系
路程用s表示,速度v用表示,时间用t表示,三者之间的关系:
s=vt v=s/t t=s/v
总价用a表示,单价用b表示,数量用c表示,三者之间的关系:
a=bc b=a/c c=a/b
(2)运算定律和性质
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-(b+c) =a-b-c
(3)用字母表示几何形体的公式
长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab
正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a²
平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah
三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2
3 用字母表示数的写法
数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
【模拟试题】(答题时间:60分钟)
一. 口算
537-98 100-0.91 1.25×8 4.3×1.01
2.3×11 500×0.001 7÷1.25 100-0.1
13÷0.25 4.2÷0.02 7.28÷0.7 0.6×0.9

二. 填空
1. 3.07平方米=( )平方分米
2. 0.55时=( )分 1时15分=( )时
3. 一个三角形的面积是1.8平方米,与它等底等高的平行四边形的面积是( )平方米
4. 一个梯形的面积是16.15平方厘米,已知它的上底6.3厘米,高是3.4厘米,它的下底是( )厘米
5. 两个完全一样的直角三角形,底是25厘米,高是18厘米,把它们拼成一个平行四边形,这个平行四边形的底是( )厘米,高是( )厘米
6. 8.036464……用简便记法是( ),精确到百分位的是( )

三. 判断
1. 当 时,a一定大于0.27( )
2. 不是方程( )
3. ( )
4. ( )

四. 脱式计算(能简算的要简算)
1.
2.
3.
4.

五. 按要求列式计算
1. 8.2除以0.2的商减去8与2.4的积,差是多少?
2. 8.35与3.75的和乘它们的差,积是多少?

六. 求下列图形的面积(单位:厘米)

七. 解答下面的应用题
1. 一辆卡车从甲地到乙地,原计划每小时行65千米,3.2小时到达。实际由于堵车,比原计划多用0.8小时到达乙地,实际每小时行多少千米?
2. 师徒二人共要加工368个零件,师傅先加工6小时,每小时完成24个,剩下的由徒弟加工,徒弟每小时加工16个,徒弟需要加工几小时才能完成?
3. 农机厂生产一批喷物器,每天生产240台,要26天完成,技术革新后,每天生产260台,这样可以提前几天完成?
4. 用一批布料制作儿童服装,一条裤子用布0.8米,一件上衣比一条裤子多用布0.4米。如果全部做裤子可以做150条,如果全部做上衣可以做多少件?
5. 学校召开“亲子运动会”,同学们要做10面小旗(如图),一共要用彩纸多少平方厘米?

思考题:下图是两个完全一样的直角三角形叠在一起,已知AB=8分米,BC=3分米,CD=5分米,求阴影部分的面积。

【试题答案】
一. 口算


二. 填空
1. 3.07平方米=(307)平方分米
2. 0.55时=(33)分 1时15分=(1.25)时
3. 一个三角形的面积是1.8平方米,与它等底等高的平行四边形的面积是(3.6)平方米
4. 一个梯形的面积是16.15平方厘米,已知它的上底6.3厘米,高是3.4厘米,它的下底是(3.2)厘米
5. 两个完全一样的直角三角形,底是25厘米,高是18厘米,把它们拼成一个平行四边形,这个平行四边形的底是(25)厘米,高是(18)厘米
6. 8.036464……用简便记法是( ),精确到百分位的是(8.04)

三. 判断
1. 当 时,a一定大于0.27(×)
2. 不是方程(√)
3. (×)
4. (√)

四. 脱式计算(能简算的要简算)
1.
=13.02
3.
=1.1
这样可以么?

⑵ 小学一到五年级数学知识重点汇总(详细)

小学五年级全科目课件教案习题汇总语文数学

三 单 元
有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点。 正方体可以看成是长、宽、高都相等的长方体。
3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高。 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和。 长方体的棱长总和=(长+宽+高)×4, 用字母可以表示为=C长方体(a+b+h)4。
正方体的棱长总和=棱长×12,用字母可以表示为=12aC正方体。 5、长方体或者正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为
=(ab+ah+bh)2S长方体。
正方体的表面积=棱长×棱长×6,用字母表示为2=6aS正方体。 6、物体所占空间的大小叫做物体的体积。
计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m。3311000dmcm,33
11000mdm。 7、棱长是1 cm的正方体,体积是13cm。一个手指尖的体积大约是13
cm。
棱长是1 dm的正方体,体积是13dm。一个粉笔盒的体积大约是13
cm。
棱长是1 m的正方体,体积是13
m。用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13
cm。
8、长方体的体积=长×宽×高,用字母表示为=abhV长方体。 正方体的体积=棱长×棱长×棱长,用字母表示为3
=aV正方体。 长方体和正方体的统一公式:支柱体的体积=底面积×高。
9、容器所能容纳物体的体积,叫做它的容积。计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml。

4
311Ldm,311mlcm,11000Lml
10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同。但是要从容器里面量出长、宽、高。
11、形状不规则的物体,求他们的体积,可以用排水法。水面上升或者下降的那部分水的体积就是物体的体积。

第 四 单 元
一、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。把什么平均分,什么就是单位“1”。 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位。一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大。 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线。 =
被除数被除数除数除数,=分子
分子分母分母

5、求一个数是另一个数的几分之几的解题方法:用除法计算。 =一个数一个数另一个数另一个数

在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=
1
比较量
比较量单位“”单位“” ”计算。
6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率
,能约分的要约成最简分数。 二、真分数和假分数
1、分子比分母小的分数叫做真分数,真分数小于1;
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1;
由整数部分(不包括0)和真分数合成的分数叫做带分数。
2、假分数化成整数或带分数,要用分子除以分母。当分子是分母的倍数时,

5
能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母

三、分数的基本性质、约分、通分
1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数。
2、两个数公有的因数,叫做它们的公因数。其中最大的公因数叫做它们的最大公因数。当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数)
3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数。也可以用短除法计算。
4、分子和分母只有公因数1的分数叫做最简分数。
把一个分数化成和它相等,但分子分母都比较小的分数叫做约分。约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分。
5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数。一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法。当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积。
6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分。 四、分数和小数的互化 1、小数化分数的方法
小数化成分数时,小数部分有几位小数,就在1后面写几个“0”作分母,把原来的小数去掉小数点后作分子。小数化成分数后,能约分的要约成最简分数。
2、分数化小数的方法

6
①分母是10,100,1000„的分数化成小数,可以直接去掉分母,看分母1后面后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点;分子位数不足时,用0补足,整数部分写0.
②不是以上这些特征的分数时,要用分子除以分母。除不尽的,根据“四舍五入”法保留一定的位数。
3、判断一个分数是否能化成有限小数的方法:一个最简分数,如果坟墓中只含有质因数2或5,这个分数就能化成有限小数。 4、比较几个数的大小
如果只有两个分数要比较大小:①分母相同的,分子大的分数就大;②分子相同的,分母越大的分数反而越小;③分子、分母都不相同的,要化成分母相同的分数再比较。
几个数比较大小,包含分数和小数时,一般把分数化成小数后再比较大小,最后需要比较的是原数的大小。(需要特别注意是从大到小排列时要用大于号连接;而小到大排列,用小于号连接)

第 五 单 元
1、同分母分数相加减,计算时,分母不变,只是把分子相加减。
2、计算时要注意:当计算的结果是假分数时,要化成整数或带分数;当计算的结果能约分的,一定要约成最简分数;当几个分数相减,分子等于0时,这个分数就是0.
3、任意一个自然数(1除外)作为分母的所有最简真分数的和,等于最简真分数的个数除以2.
4、计算异分母分数加减法,因为分母不同,就意味着分数单位不同,不能直接相加减。根据分数的基本性质,先进行通分,然后再按照同分母的分数加减法的计算法则进行计算。
5、分数加减混合运算的运算顺序和整数加减混合运算的顺序相同,即从左到右依次计算,有括号的要先算括号里面的。整数加法的交换律、结合律、减法的性质对于分数加减法仍然适用。

第六 单元 1、在一组数据中,出现次数最多的数就是这组数据的众数,众数能够反映一组数据的集中程度。
2、在一组数据中,众数可能不止一个,也可能没有众数。

小学数学五年级上册重难点

第一单元:小数乘法。

1、小数乘整数------重点:理解小数乘整数的算理。

2、小数乘小数------重点:小数乘小数的计算方法。

3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。难点:根据实际情况取近似值。

4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。难点:引导学生理解解决问题中出现的解题思路。

5、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。

第二单元:小数除法。

1、小数除以整数------重点:小数除以整数的计算方法。难点:让学生理解商的小数点是如何确定的。

2、一个数除以小数------重点:掌握除数是小数除法的计算方法。

3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。

4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。难点:怎样判断除得的商是循环小数。

5、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。

第四单元:简易方程。

1、用字母表示数------重点:会用字母表示数、运算定律及计算公式。

2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。

3、方程的意义------重点:初步理解方程的意义。

4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。

5、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。

6、稍复杂的方程(二)------重点:分析数量关系。难点:列方程和解方程。

7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。

第六单元:统计与可能性。

1、可能性------重点:理解掌握可能性的意义,用分数表示可能性。

2、中位数------重点:理解中位数的意义,掌握求中位数的方法,能根据数据的具体情况及所要分析的问题选择适当的统计量。

3、铺一铺------重点:认识密铺,知道哪些图形可以密铺。

第七单元:数学广角。

1、数学广角(一)------重点:学会通过各种途径查找资料,并能对搜集的信息进行分析,发现生活中数字编码所反应的信息。

2、数学广角(二)------重点:使学生能利用规律根据实际需要设计编码,运用所学的知识给全校学生编码,给班级图书编号。

⑷ 小学数学五年级位置知识点总结

网络知道
位置的知识点
小学数学五年级位置知识点总结查看全部9个回答
小学数学五年级内位置知识点总结容
小学数学五年级位置知识点总结
我来答
热心网友
2019-01-14
位置重要知识点整理
1、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或
字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓ 竖排叫列 横排叫行
(从左往右看)(从下往上看)
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上
望采纳 谢谢

⑸ 小学五年级数学该怎么复习

五年级属于一个非常时期,面临小升初的压力必须要在这一时期将数学成绩有所提高.另外五年级的数学难度有所提高,下一步是迎接初中.五年级在其中发挥重要的作用.那小学五年级数学辅导具体有哪些.

(难度)


对于孩子的学习往往使家长感到很头大,此时可以在假期借助辅导班来对孩子进行全面的辅导,从学习的要点到学习方法,还有就是学习习惯的养成利用好假期,使孩子在假期中不浪费时间,提高数学的成绩.小学五年级数学辅导单单依靠家庭有时候是不能完成的,家长朋友给孩子找个辅导班或者是一对一家教,利用假期时间,制定好学习计划,让孩子严格按照计划按部就班坚持去做,相信会有很大的收获.

⑹ 怎样学好五年级数学,小学数学重点概念

1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。
简便乘法:被乘数,乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7,什么叫等式
等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式
答:含有未知数的等式叫方程式。
9, 什么叫一元一次方程式
答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。
24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。

26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33,要学会把小数化成分数和把分数化成小数的化法。

⑺ 小学五年级数学知识点

小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方。 2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程。
=方程右边
所以,X=…是方程的解。
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局

35、身份证号码:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)
1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:从1倍开始有序的找。
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数。
7、找因数:找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身。
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数。
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类。
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、 分母:表示平均分的份数。分子:表示取出的份数。
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数。表示其中的一份的数,叫做这个分数的分数单位。
4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。
5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
6、 带分数:由整数和真分数组成的分数叫做带分数。
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
13 互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数。
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分。计算结果通常用最简分数表示。
18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数
做分数的分母较简便。
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变。
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。
②把3平均分成4份,表示这样的1份。
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择
其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地。
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积。(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积。
2.不规则图形面积的估算:
(1)数格子的方法。
(2)把不规则图形看成近似的基本图形,估算出面积。
鸡兔同笼:
1, 列表法。
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小。
2,设计活动方案。
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
1、直接写出得数。(每小题0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、计算,能简算的要简算。(每小题2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小题2分,共6分)
① X+1/5-4/35=27

② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式计算。(每小题3分,共6分)
① 65减去多少个2.5后还剩17.5?
② 一个数的一半与20的和是120,求这个数。
5、图形观察、计算。(每小题3分,共6分)
???
五、解决问题。(每小题5分,共30分)
1、小明的妈妈去超市买牛奶,有下面这样三种瓶装的牛奶,你认为买哪种瓶装的最合算?为什么?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一块长45米,宽28米的长方形地上铺一层4厘米厚的沙土,如果用一辆每次只能运3.5方沙土的汽车来运这些沙土,这辆汽车至少要运多少次?
3、一段长方体木材,长1.2米,如果锯短2分米,它的体积就减少40立方分米。求原来这段木材的体积。
4、东东家有一些鸡蛋,5个5的数,6个6的数,12个12的数,都多4个,已知这些鸡蛋在100-130个之间。你知道东东家有多少个鸡蛋吗?

⑻ 小学五年级数学知识点总结

数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选

择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择

其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。

3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行

驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明

原地不动;线往下画,说明又从终点回到某地。

⑼ 小学五年级数学学习重点有哪些

其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。 在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。 统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。 综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。

⑽ 小学五年级下数学知识点

5下的
1. 理解分数的意义;*
2. 思考,并会用长方体,正方体的表面积,体积运算公式。*
3. 做好统计,并学会做统计表,会看统计表!
(以上都很重要,打星号的特别重要)

做些题吧

一.填空。

1.自然数中,既不是质数,又不是合数的数是 ( ),最小的质数是 ( ),最小的合数是 ( )。

2.把120分解质因数是( )。

3.两个互质数,又都是合数,它们的最小公倍数是60,这两个数分别是 ( ) 和 ( )。

4.a和b是一对互质数,a×b =36,则a和b分别是( )

5.一个三位数,它的个位上是最小的自然数,十位上是最小合数,百位上是最小的质数,这个三位数是( )。

6.一个长方体的长为1分米,宽为8厘米,高为3厘米,它的表面积是( ),体积是( )。

7.用一根长为48厘米的铁丝制成一个最大的正方体框架,它的表面积是( )平方厘米,体积是( )立方厘米。

8.已知一个三角形的面积是24平方厘米 , 底是8厘米,高是( )厘米。

9.把一根长2米的长方体木料,平均锯成4段,表面积比原来增加了48平方分米,原来这根木料的体积是( )立方分米。

10.已知一个梯形的面积是36平方厘米,高为4厘米,上底与下底的和是( )。

11.已知甲数=3×3×5×7, 乙数=3×5×7×11, 甲乙两数的最大公约数是( )。

12.把下面各数按要求填。

6 9 102 45 110 91 780 248 37

奇数( ) 能被2整除( )

偶数( ) 能被3整除( )

质数( ) 能被5整除( )

合数( ) 能被2、3、5整除( )

二.判断。

1.长方体的棱长之和是84厘米,从一个顶点出发的三条棱的长度之和是21厘米。 ( )

2.7.2除以一个小数,所得的商一定大于7.2。 ( )

3.没有公约数的两个数叫做互质数。 ( )

三.选择题。

1、如果m、 n 都是自然数,m = 8n,则m和n的最小公倍数是 ( )。

A、m B、n C、mn D、8

2、下面的各组数里,第一个数能被第二数整除的是 ( ) 。

A、36和0.9 B、7和56 C、54和27 D、84和8

3、如果两个自然数的最小公倍数是210,它们的最小公约数是14,那么这两个数是 ( )。

A、140和21 B、42和70 C、10和21 D、14和35

4、若m÷n = 13, m ,n 都是自然数,则m是n的( ),n是m的( )。

A. 最小公约数 B. 最大公约数 C. 最大公倍数 D. 最小公倍数

5、99.999保留两位小数是 ( )。

A.99.99 B.100 C.100.00 D.100.0

6、相邻两个自然数的和一定是( ),积一定是( )。

A. 奇数 B. 偶数 C. 合数 D. 质数

四.计算。

1.计算,能简算的要简算。

6.71×7.5 + 2.5×6.71 ( 3.12 + 0.3 )÷[ ( 1-0.4 )÷0.2 ]

3.14×625-3.14×374-3.14 [ 41-( 4.2 + 5.8÷5 ) ]÷0.9

3.4÷4.41 + 0.4×0.05 12.5×3.2×0.25×1.3

2.直接写出得数。

5.2-3 + 8= 2.9 + 4.1 = 1÷0.05 = 8×0.5 = 3.29÷3.29 =

8.9 + 8.9 = 2-3.6 = 8.8-0.8 = 4.8÷1.6 = 0×(4-0.4 ) =

3.解方程。

6x-0.4×6 = 9.6 118-2×( 4.1 + X ) = 55 4x +80 = 160

9.6÷X = 0.8 4.8-X = 3×( X + 6 ) 4.3X-1.5 + 3.2X = 4.5

4.求阴影部分面积。

5厘米

3厘米

五.列式计算。

1.一个数减去3.6,所得的差的5 倍,正好等于这个数的3倍,求这个数。

2.乙数比丙数的2倍少3,甲数是乙数的4倍,已知甲数是132,求丙数。

3.2.5与64的积去除 1.44,商是多少?

4.一个数的5倍比40除以5的商少48,求这个数。(用方程解)

六.应用题。

1.只列式不计算 。

(1)工程队修一条长480米的路,计划12天完成。实际10天就完成了,实际每天比计划多修多少米? 算式:____________________

(2) 小华前2次数学测验的平均成绩是91分,后3次测验平均成绩是90分。求他这5次测验的平均成绩。 算式:_____________________

2.李红和王刚买同一种练习本5本和3本,已知李红比王刚多付7.20元,这种练习本的单价是多少元?

3.甲乙两位运动员练习赛跑,甲每秒跑7米,乙每秒跑6.5米。如果让乙先跑出10米后,甲再出发,几秒钟后甲追上乙?(用方程解)

4.甲车每小时行50千米,乙车每小时行56千米,两车从相距20千米的两地相背而行,几小时后两车相距274.4千米?

5.一个游泳池长50米,宽30米,深3.5米。在游泳池的四壁和底部铺上边长1分米的方砖,共需方砖多少块?如果将这个游泳池放满水,能放水多少立方米?

6.果园里有桃树730棵,比梨树的1.25倍少20棵,果园有梨树和桃树共多少棵?

7.工程队要筑一条长7.4千米的公路,已经筑了12天,平均每天筑0.35千米,剩下的要在8天内完成,平均每天至少要筑多少千米?

五年级下册数学期末试卷

一.填空题 。

1、24的所有约数有( )个,24的最小倍数是( )。

2、在自然数1--20中,既是偶数又是质数的有( );既是奇数又是合数的有( )。

3、a和b的最大公约数是1,最小公倍数是( )。

4、一个正方体的棱长扩大3倍,体积就扩大( )倍,表面积扩大( )倍。

5、3升60毫升 =( )升 =( )毫升。

6、甲数 = 2×3×5×7 乙数 = 2×5×11

则两数的最大公约数是( ),最小公倍数是( )

7、把96分解质因数是( )。

8、把4米长的木棒平均分成7段,每段长 )米,每段占全长的( )。

9、 =( )÷15 = 15÷( )=

10、分数单位是 的最大真分数是(),最小假分数是( ),最小带分数是( )

11、1里面有( ),2里面有( )。

2 的分数单位是( ),20个这样的分数单位是( )。

12.李明今年a岁,张亮今年a + b岁;5年后,两人的年龄相差( )岁。

13.已知a = 2.3,b = 5;则8a-b + 2a的值是( )。

14.两个数的积是72,它们的最小公倍数是36,这两个数的和最小是( )。

15.有周长都是36厘米的正方形和长方形,长方形的长是宽的3倍。它们的面积相差( )平方厘米。

二 判断(对的打√,错的打×)

1、长方体相邻的面没有完全相同的。 ( )

2、两个数的公倍数必定比这两个数都大。( )

3、任何整数,必定都有两个约数。 ( )

4、两个合数一定不是互质数。 ( )

5、是最简分数。 ( )

6、因为比小,所以的分数单位比的分数单位小。 ( )

7. 2.12和18的最小公倍数是这两个数的最大公约数的6倍。 ( )

8.沿着等腰三角形底边上的高剪开,可以把等腰三角形分成两个相等的直角三角形。 ( )

三 选择(把正确答案的序号填在括号里) 。

1、把一个长方体割成许多小正方体,它的体积( ),表面积( )

① 不变 ② 增加 ③ 减少

2、一个长方体是8厘米,宽是6厘米,高是4厘米,它的棱长和是( )厘米。 ① 18 ② 36 ③ 72

3、1立方米的正方体以分成( )个1立方分米的小正方体。

①1000个 ②100个 ③10个

4、下面各数中,两个数都是合数又是互质数的数是( )。

①16和12 ②27和28 ③11和44

5、下面各数中,不能化成有限小数的是( )

① ② ③

四 文字题。

1.3与1的和,加上2,等于多少?

2. 5减去2所得的差加上3,和是多少?

六.应用题

1.某气象小组在一天中的2时、8时、16时和20时分别测得气温是18度、20度、28度和26度。求这一天的平均气温。

2.新河乡修了一条水渠,第一天修了58.5米,比第二天修的3倍多4 ,第二天修了多少米。

3.仓库存有一批货物,运走了45吨,比剩下的多20.3吨,这批货物共有多少吨?

4.一根长24米的电线,用去了16米,用去了全长的几分之几?还剩下全长的几分之几?

5.用铁皮做一个长方体油箱,油箱的长8分米,宽6分米,高5分米。至少要用铁皮多少平方分米?如果每立方米油重0.82千克。那么,这个油箱最多可装柴油多少千克?

6.一辆汽车从甲地开往乙地,每小时行50千米,6小时到达;返回时,每小时行60千米,几小时可以到达?

7.一个长方体的鱼缸,从里面量长6分米、高5分米、宽4分米,现在往鱼缸内注入96升水,水面离鱼缸的沿口有多少分米?

五年级下册数学期末试卷
一.填空.
1.8平方米8平方分米=( )平方米 =( )平方分米
2.6700米=( )千米( )米 =( )千米
3.用铁丝焊接成一个长10厘米,宽6厘米的长方体框架,至少需要( )厘米铁丝.
4.把3个1立方厘米的小正方体木块拼成一个长方体木块,这个长方体木块的体积是( ),表面积是( )
5. 从0, 1, 2, 4四个数字中分别选择三个数字, 组成同时能被2, 5, 3整除的最大三位数是( ), 最小三位数是( ).
6.( ) 除以13商5余2.
7.商是21, 如果被除数缩小10倍, 除数扩大10倍, 那么商是( ).
8.在8的后面添上一个零, 这个数比原数多( ), 这个数比原数多( )倍
9.把3米长的线段平均分成5份,每份长用分数表示是( )米,用小数表示是( )米.
10. 和 这两个分数中,分数值较大的数是( ),分数单位较大的数是( ).
11. 的分数单位是( ),再添上( )个这样的分数单位就是最小质数.
12. 两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是

( )和( ).
13.把2米长的铁丝截成相等的3段,每段占全长的( ),每段长( )米.
14.16和24的最小公倍数是( ),把这个数用质数相乘的形式表示是( ).
二.判断题.
1.2.4÷0.3 = 8, 因为商是整数而且没有余数, 所以2.4能被0.3整除. ( )
2.小数比整数小. ( )
3.质数中只有2是偶数,其余都是奇数 . ( )
4.相邻的两个自然数一定是互质数. ( )
5.一个数的计数单位越大,这个数就越大. ( )
6.甲绳比乙绳长米,乙绳就比甲绳短. ( )
三.选择题.
1.13÷2 = 6.5, 我们说13能被2. A. 整除 B. 除尽 [ ]
2.一个正方体的棱长是a ,它的表面积是 [ ]
A.12a B.6a2 C.a2 D.a3
3.自然数中最小的一个数是A. 0 B. 1 [ ]
4.的分母增加15,要使分数大小不变,分子应扩大 ( ).
A. 4倍 B. 3倍 C . 15倍 D. 6倍
5.小明家离学校大约1千米,他从家步行到学校,大约要( )分钟.
A. 80 B. 60 C. 5 D. 3
6.在前1000个自然数中有168个质数,那么合数的个数有( ).
A.833个 B,832个 C,831个 D,830个
7.一个长方体锯成二段要用5分钟,锯成5段要( )分钟.
A,25 B,20 C,12.5
8.三个连续自然数的和是12 ,这个三个数的最大公约数是( ).
A,1 B, 2 C, 3
四.应用题.
1.一个正方体的水箱,每边长4分米,装满了一箱水,如果把这一箱水倒入另一个长是0.8米,宽是25厘米的长方体水箱中,水深是多少

2.用一张长50厘米,宽40厘米的长方形纸板,从四个角剪去边长1厘米的正方形后,做成纸盒,这个纸盒容积是多少表面积是多少

3.甲乙两港相距180千米,一艘轮船去时每小时行驶45千米,返回时逆风,每小时行驶30千米,求这艘轮船往返甲,乙两港的平均速度.

4.甲汽车28分钟行20千米,乙汽车40分钟行25千米,每分钟的速度哪一个快快多少

5.某粮店运进大米1.5吨,面粉比大米多吨,杂粮比面粉少吨,问共运进粮食多少吨

6.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,完成任务时徒弟正好生产了450个,这批零件共多少个

阅读全文

与小学5年级数学重点相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99