❶ 如何在小学数学教学中实施新课程标准要求
如何在小学数学教学中实施新课程标准要求
基本理念分6部分:
1.数学课程
2.数学(主讲数学的作用)
3.数学学习
4.数学教学活动
5.评价
6.现代信息技术
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会想象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力,抽象能力,想象力和创造力方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察,实验,猜测,验证,推理与交流等数学活动。内容的呈现要采用不同的方式,以满足多样化得学习要求。有效地数学学习活动不能单纯的依赖与模仿和记忆,动手实践自主探索和合作交流也是学生学习数学的有效方式。由于学生所处的文化背景、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验的基础上。教师应激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动的经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元,评价方法多样的评价体系。对数学学习的评价既要关注学生学习的结果,更要关注他们学习的过程;既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感和态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大影响。数学课程的设计和实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的探索性的数学活动中去。
❷ 如何理解如何理解小学数学新课标
.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
❸ 小学数学新课标总目标中的基本技能是什么
● 经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。
数 学 思 考
● 经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解 决 问 题
● 初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
● 学会与人合作,并能与他人交流思维的过程和结果。
● 初步形成评价与反思的意识。
情 感 与 态 度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。
❹ 浅谈如何落实小学数学新课标理念
作为小学数学教学的一线教师,如何落实新课标理念,下面,就我多年的教学经验以及对新课改革精神的学习与理解,谈一谈我对在新课标理念指导下开展数学课的几点个人体会:
一、结合教学实际,重视培养学生的数感
在当前的义务教育数学改革中,笔算是被削弱的内容,降低了笔算的复杂性和熟练程度,这不是说计算能力的培养不重要了,其实正相反。《标准》中明确指出要“提倡算法的多样化,避免程式化的机械计算和叙述算理”。既然这样,我们怎样提高全体学生的计算能力和良好的数感呢?
1、依据教学内容,精心设计“口算”题。“口算”是一个人最基本的计算能力,也是一种最生活化的基本技能。
2、精心设计教学内容,留给学生自主探索的空间。计算的学习要符合儿童学习计算的认知规律,同时,也要符合计算知识本身的发展规律。
3、不用固定的语言文字来概括计算法则,让学生在自主的探索中获得对计算过程与算理的理解。
4、让学生在现实情景中理解数学知识的意义和作用,培养学生用数学解决问题的良好数感。
5、笔算与估算结合,加大估算的教学力度。要把估算作为现代数学基础教育的重要内容来抓,这既能为学生数学的发展奠定良好基础,也符合学生今后的生活需要。
二、结合生活与教学实际,加强对学生的实际操作能力、自主探索能力、估测能力的培养
1、在教学中培养学生的操作,探索和估测能力。课堂教学是学生学习的主阵地。学生将通过课堂学习获得相关的知识与技能,并在教师的指导下,获得学习的方法,端正学习的态度,受到各种思想的熏陶,特别是学生的操作、探索和估测能力的提高更是离不开教师的指导。
2、在生活中培养学生的操作,探索和估测能力。知识离开了生活,就无从验证,能力离开了生活就得不到提高。学生在课堂上所获得的是基础知识与基本技能,这些基础知识与基本技能只有经过学生生活的再次洗礼,才能不断提高学生的各种能力。在生活中教师也可以有意识的培养他们的这些能力。
三、逐步发展学生综合运用知识的能力,注重情感、态度、价值观以及数学思想的均衡发展
1、学生综合运用知识的能力培养。知识的价值在于应用,如果学会了知识却不会运用就等于不会知识。也就是说,教师的任务不仅仅是引导他们学会知识,更要的是要引导他们学会学习和运用知识。
2、渗透思想教育,让学生的情感、态度、价值观得以均衡发展。学生的情感、态度、价值观直接影响到他们对数学知识的把握与理解。那么,就需要教师在教学时激发他们的学习兴趣和探索知识的欲望,利用教材与生活中他们感兴趣的素材渗透各种思想教育。
四、建立与数学同步的评价机制与体系,增强学生学好数学的信心。
学生的信心来自于不断的成功,来自于教师充分的肯定。这就是说,学生用什么样的心态对待学习,很大程度上取决于教师的评价。因此,每一位教师都应该有自己对学生评价的评价体系和在教学中不断完善改进的评价机制。
相信“只有无心的教师,没有改变不了的学生。”只有具备了高尚心灵的老师才能心平气和,也才能具有无穷的智慧。面对千差万别的学生,教师“送之以甘泉”,他们会“报之以桃李”,教师立足学生长远发展的无私奉献必将硕果累累。
❺ 如何解读小学数学新课标中有关教学实施建议的部分
《数学课程标准》在前言中,从数学教育的基础性、普及性、发展性,数学的学习内容、数学的学习方法、数学的教学方法、对学生的数学学习评价和现代信息技术对数学教育的价值这六个方面,提出了新的理念。
(一)关于数学课程的功能
《标准》对“全体”含义是这样表述的:人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。这一理念她突出体现了数学教育的基础性、普及性和发展性。
1. 人人学有价值的数学
有价值的数学是指既应满足学生对未来社会的需要,有助于走向社会;又要适应学生个性发展,有益于启迪开发智力。是与学生现实生活及以往的知识体验有密切关系、对他们有吸引力的内容。相反的,仅仅为了考试的内容从大中数学的角度来说就是没有价值的数学。我们的周围处处有数学,生活中随时都在用数学。
例如:打电话不用数字不能通话
坐电梯不按数字不能上、下楼
坐公共汽车不用数字不行(分辨是几路;往哪个方向走;上车后买票找钱)
买东西花钱时,不能不用数学知识(元、角、分的认识;简单的四则运算)
这些和现实生活密切相关的数学知识都是有价值的数学。从更广泛的意义上说,有价值的数学,还要满足素质教育的要求,有助于学生健全人格的发展和积极向上的价值观的形成,有助于学生自信心、责任感、合作意识、创新意识、求实的态度和科学精神的培养。不仅对学生学习有用,而且对未来学生从事任何事业都有用。
❻ 新课标小学数学 位置与方向的教学要求如何确定
教学要求:
11、借助现实的教学活动,培养辨认方向的意识,发展空间观念,
2
给定一个方向(东、南、西、北)能辨认其余方向,并能用这些词语描绘物体所在的方向。
3、 知道地图上的方向,会看简单的路线图。
教学重难点:
正确辨认方向,正确看简单的路线。
教学建议:
本单元是在学生会用上、下左、右、前、后描述物体相对位置的基础上来学习辨认东、南、西、北四个方向。教学时要借助学生以有的生活经验,创设情景,增加学生探索的机会,让所以的学生参与到活动去,可以带领学生亲自去操场上观察、辨认,并说说在不同方向看到的景物,或者增加一些游戏活动,使学生能在实景中正确辨认东、南、西、北。
1、 关于教材第58页“东南西北”。
教学时可先引导学生说说太阳从哪个方向升起来,然后可
带学生到操场上,分小组在实景中辨认“东、南、西、北”四个方向,说说每个方向各有哪些景物,然后把这些景物记录在附页中,标明方向。要记录符号要用自己喜欢的,老师不做统一要求。
2、 关于教材第62页“看望老人”。
本节课可以创设情景,让学生在趣味的生活场景中学会看
简单的路线图。最关键的是要引导学生看懂图意,即:上方是南,下方是南、左方是西、右方是东。然后引导学生独立完成“填一填”、“说一说”,要在小组中交流。
课时安排:
❼ 新课标小学数学课程总目标的四个方面之间有什么关系
小学数学新课程标准总目标
通过义务教育阶段的数学学习,学生能够:
1.获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能;
2.初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;
3.体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
4.具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
1知 识 与 技 能
● 经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。
● 经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。
● 经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。
数 学 思 考
● 经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。
● 丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
● 经历运用数据描述信息、作出推断的过程,发展统计观念。
● 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解 决 问 题
● 初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。
● 形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
● 学会与人合作,并能与他人交流思维的过程和结果。
● 初步形成评价与反思的意识。
情 感 与 态 度
● 能积极参与数学学习活动,对数学有好奇心与求知欲。
● 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
● 初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
● 形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
全日制义务教育数学课程第二学段目标
第二学段(4~6年级)
知 识 与 技 能
●经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方程表示简单的数量关系,会解简单的方程。
●经历探索物体与图形的形状、大小、运动和位置关系的过程,了解简单几何体和平面图形的基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图 、作图等技能。
●经历收集、整理、描述和分析数据的过程,掌握一些数据处理技能;体验事件发生的可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
数 学 思 考 ●能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题。
●在探索物体的位置关系、图形的特征、图形的变换以及设计图案的过程中,进一步发展空间观念。
●能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
●在解决问题过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
解 决 问 题
●能从现实生活中发现并提出简单的数学问题。
●能探索出解决问题的有效方法,并试图寻找其他方法。
●能借助计算器解决问题。
●在解决问题的活动中,初步学会与他人合作。
●能表达解决问题的过程,并尝试解释所得的结果。
●具有回顾与分析解决问题过程的意识。
情 感 与 态 度
●对周围环境中与数学有关的某些事物具有好奇心,能够主动参与教师组织的数学活动。
●在他人的鼓励与引导下,能积极地克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。
●体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。
●通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性。
●对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时改正。
❽ 小学数学的新课标是什么
小学数学新课程标准
第一部分 前 言
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得 数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一) 关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。
(二) 关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。
知识技能目标
了解(认识)
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。
理解
能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握
能在理解的基础上,把对象运用到新的情境中。
灵活运用
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标
经历(感受)
在特定的数学活动中,获得一些初步的经验。
体验(体会)
参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
探索
主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象 的区别和联系。
(三) 关于学习内容
在各个学段中,《标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式。
(四) 关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。
为了解释与说明相应的课程目标或课程实施建议,《标准》还提供了一些案例,供参考。
❾ 通过学习《小学数学"平移与旋转"的教学研究与案例评析》课程.谈谈在新课标背景下,怎样理解"图形运动"框架
《 2011 版数学课程标准》在“图形与几何”领域仍然增加了“平移,旋转,放大与缩小这些内容”,只是把“图形与变换”改为“图形的运动”。所谓图形的运动,在义务教育数学课程中最基本的形式有两种:一是形状和大小不变,仅仅位置发生变化(合同运动);二是形状不变而大小变化(相似运动)。1. 从学生角度来看现实生活中存在着大量的图形的变换的现象,学生有丰富的生活经验,例如,电梯、地铁列车在平行移动;钟面指针、自行车轮、电风扇叶片在旋转运动;许多年画、卡通动物、建筑物的形状具有对称性。这些现象为儿童学习图形的变换提供了丰富多彩的现实背景。我们希望提供给学生一种数学的眼光,去认识和把握这些现象。通过图形的运动探索发现并确认图形的一些性质,有助于学生发展几何直观能力和空间观念,有利于学生提高研究图形性质的兴趣、体会研究图形性质可以有不同的方法。2.从数学发展的角度来看1872 年,德国大数学家克莱茵发表“爱尔兰根纲领”的演说,这个里程碑式的论断,改变了近两千年来人们用静止的观点研究几何的传统方法。与静态地研究图形与几何的性质不同,图形的变换是从运动变化的角度去探索和认识图形与几何的性质,欣赏与设计图案。是发展学生空间观念和思维能力的重要内容。以运动的观点来探究几何图形变化规律的问题也是近年来中考综合考查的重点,这类问题的显著特点是:图形中的某个元素(如点、线、角等),或整个几何图形按某种规律运动,图形的各个元素在运动变化中相互依存,相互影响,解答这类问题时,在观察几何图形运动变化的过程中要善于探索并发现一些几何性质,相互关系及规律,学生要解答此类问题就必须具有扎实的基础知识和灵活的解题能力,并且往往需要综合运用转化思想、数形结合思想、方程函数思想及分类讨论等各种数学思想。 在解题过程中要善于借助动态思维的观点来分析,不被“动”所迷惑,从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决,从而找到“动”与“静”的联系,揭示问题的本质,发现运动中的各个变量之间互相依存的函数关系,从而找到解决问题的突破口,也就找到了解决这类问题的途径。 这样看来,在平时的教学活动中应重视图形运动的教学,注重由浅入深、循序渐进、因材施教、面向全体学生,设置多媒体课件,启发学生寻找解题思路,自觉使用数学思想方法,“以动求静”、数形结合、函数思想、图形的运动是新课程的热点,也是学生发展的重点,让我们在图形运动变化的过程中体验、把握、认知数学知识,应用数学、创新数学。
❿ 如何理解小学数学新课标中的核心概念
在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。 在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。这是一个渗透在整个标准的研制过程中。第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。(二)核心概念的理解 1.数感 数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义。在这里边,有这样两句话,来帮助理解数感。数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟。然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能。学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本。 2.符号意识 关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。因为符号感更多的是感知,是一个最基本的层次。而符号意识对学生理解要求更高一些。在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。 还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。 3.空间观念和几何直观 空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画。具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。这是对于空间观念的一个刻画。 空间观念和几何直观这两个概几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。 4.数据分析观念 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。 5.运算能力 运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。 6.推理能力 推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念。经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面。首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。 7.模型思想 首先说一下标准的解释,就是模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。这个基本上模型思想概括的比较清楚。 8.应用意识和创新意识 首先是应用意识,应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。 从某种意义上,越小的孩子,他越有创新,小孩子的兴趣,小孩子对问题的敏感性,他能提出很多很多成人可能都难以解决的问题,其实他本身就是创新。