『壹』 浅谈如何在小学数学课堂教学中渗透数学思想方法
数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法,是实施素质教育,发展学生能力,提高数学能力,减轻学生课业负担的重要举措,在课程数学改革中有举足轻重的位置。那么,在小学数学教学中,究竟应如何渗透数学思想方法呢?
一、转变观念,重视挖掘数学思想方法。
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,圆的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立圆的表象;(2)在表象的基础上,指出圆的半径、直径及其特点,使学生对圆有一个更深层次的认识;(3)利用圆的各种表象,分析其本质特征,抽象概括为用文字语言表达的圆的概念;(4)使圆的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、 相机而动,及时引入数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。所谓直观法就是以图表形式将数学思想方法直观化、形象化。直观法的观点是能将高度抽象的数学思想方法变成学生容易感知具体材料,特别是生动有趣的图画给学生留下鲜明的印象。问题法是指学生在教师的启发下,在探究问题答案的过程中,通过回顾、思考、总结,逐步领会数学问题的规律性,进而加深对解题方法、技巧的认识。反复法是指通过同一类情景的多次出现,让学生持续接受某一数学思想方法的熏陶。剖析法是解剖典型的范例,从方法论的角度用儿童能理解的数学语言去描述数学现象,解释数学规律。在教学过程中,教师应掌握方法,不失时机的向学生渗透数学思想方法。教师可以通过以下途径渗透:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。(2)在问题的解决过程中渗透。如:教学“倒过来推想” 这一课时,在解决问题的过程中,用图表、摘录条件等方法让学生逐步领会“倒过来推想”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学完“圆的认识”这一单元之后,可及时帮助学生依靠圆的面积的推导过程回忆多边形面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。(4)在数学讲座等教学活动中渗透。数学讲座是一种课外教学活动形式,它不仅为广大学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法,给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。
三、千锤百炼——自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,对于学习者来说,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。如在教学完圆环面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
数学思想方法是一项系统工程,受诸多因素的影响和制约。我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应课程教学改革需要。当然应该看到,数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样反复训练,才能使学生真正地有所领悟。
『贰』 小学数学课堂教学有哪些数学活动经验的积累
正《抄2011版数学课程标准袭》 明确指出了数学活动经验的重要性,小学生在数学学习过程所开展的各式各类活动中,有体验、有感悟,形成的相关经验是后续学习的重要源泉,也能有效提升本身 的数学思维能力,带动数学素养的全面提升。因此,我们在课堂教学中,要创设更多的机会让学生"动"起来,让学生累积有效活动经验。具体可以从以下几个方面 加以尝试。一、将生活经验"引"进来"数学来源于生活",很多数学经验可以由生
『叁』 如何帮助小学生积累基本的数学活动经验
随着数学新课程对“过程与方法”的关注,“数学基本活动经验”日益成为数学教育的一个热门话题。人们对其内涵、组成、教育意义等都进行了深入的探讨。
但如何在实际教学中帮助学生有效地积累数学基本活动经验,仍值得研究。本文略提几点想法,求教于大家。
一、在操作活动中侧重于丰富来自感官、知觉的经验。
“基本活动经验是个体在经历了具体的学科活动之后留下的、具有个体特色的内容,既可以是感觉知觉的,也可以是经过反省之后形成的经验。”在数学活动中,学生通过外显的行为操作,对学习材料的第一手直观感受、体验和经验一般是直接经验。这类操作的直接价值并不是问题的解决,而是对学习材料的感性认识。例如,在学生研究“三角形内角和”问题时,一位学生把任意三角形的三个内角撕下来,将角的顶点重合并依次拼在一起,发现正好形成一个平角,从而得出直观视觉印象:三角形的内角和是 180度。这个过程,学生费时不多,但是亲自动手试一试的操作活动让他获得了对三角形内角和的直观感受。尽管类似于这样的感知明显带有个体认识的成分,并且还存在原始、肤浅、片面、模糊的特征,但这类直接经验的获得,是构建个人理解不可或缺的重要素材。
当然,要使这类经验能合理地积淀,有时还需要经历一个判断、筛选、确认的环节,因为学生首次操作感知的结果并不一定是正确的,而错误的经验将会对学生的后续学习带来负面的影响。举个例子来说,在教学“认识角”时,许多教师都会让学生去摸一摸具体实物上“角的顶点”,然后让学生说一说有什么感觉。学生往往会回答:“角的顶点是尖尖的,摸上去有刺痛的感觉。”这个回答体现了学生的认知起点及初始经验处于“生活数学”范畴,不足以反映数学的本质特征,如果教师不及时加以纠正和引导,那么在接下去的练习中就有可能会出现类似钟面上指针的针尖也是角、墙角也是角的错误认识。因此,数学活动所期望学生获得的经验应与某些生活经验加以区别。
再如,在教学“面积单位”时,教师往往会借助多媒体的演示力求使学生获得更充分的关于平方厘米、平方分米以及平方米的表象。这一出发点是好的,但在实际教学过程中却有可能由于夸大了多媒体的作用而忽视了学生实际感知给他带来的错误体验。许多教师往往会指着屏幕上被放大很多倍的正方形向学生介绍——边长是1厘米的正方形的面积就是1平方厘米。到底1平方厘米有多大?是学生手上的指甲盖那么大小的正方形还是屏幕上一块手绢大的正方形?如果教师此时不加以强调和规范,那么学生对于1平方厘米表象的建立就会受到影响,屏幕上被放大的“1平方厘米”很有可能会成为学生直观感知后的错误经验,形成对后续学习的干扰。因此,在经验获得的初始阶段,应该尽可能地使一些操作活动为学生的认知提供一个较为正确、清晰的体验,而不是模棱两可、似是而非的感知。经验的全面性和准确性必须为教师所重视,在提供素材、组织操作活动以及课堂提问、归纳时,教师也要充分考虑到上述因素。
二、在探究活动中侧重子融合行为操作经验与思维操作经验。
在数学课堂中,我们经常会向学生抛出特定情境下的某些问题,让学生进行动手操作、自主探究、合作交流,这其中,既有外显的行为操作活动,也有思维层面的操作活动。学生能获得融直接经验与间接经验为一体的数学活动经验。这类探究活动直接指向
问题的解决而非获取第一手直观体验。学生不仅在活动中有体验,在活动前、活动中、活动后都经历着数学思考。
例如,在教学三年级上册“统计与可能性”一课时,教师一般会让学生做“摸球”实验来感受可能性的大小。基于学生已有的知识经验,在已知盒内有9个白球和1个黄球的前提下让学生猜摸到哪种颜色球的可能性大,对学生来说已经毫无新鲜感,因此教师变化角度展开如下数学活动:“(出示盒子)同学们,这个盒子里放有白色和黄色的球共10个,不过两种球的数量不相等。如果不打开盒子看,你们有办法知道哪种颜色的球多吗?”面对这样一个问题,不同层次的学生会充分调动各自已有的经验来尝试解决。有的同学用猜的方法,随即因其结果的不确定性被同伴否认。也有同学认为可以用摸球的方法,每次摸出一个看看颜色,然后放回去摇匀再摸,多摸几次,最后看摸到哪种颜色的球多,就说明这种颜色的球多。此时的动手操作和实验成为了学生探究的需要,由于学生对实验的结果充满渴望,因此在这类探索活动中,学生所积累的数学活动经验也因个体的强烈感受而充满了活力。不可否认的是,虽然在某些问题的解决中,某种经验本身就具有很好的指导作用和实用价值,但要使数学活动经验更长效地纳入学生的个体知识体系,还需要经历一个概念化和形式化的过程,这是经验与“双基”相互融合、向“思想”升华的必要途径。
三、在思维活动中侧重于积累和提升策略性、方法性经验。
在思维操作活动中获得的经验即思维操作的经验,比如归纳的经验、类比的经验、证明的经验,等等。就一个人的理性而言,思维过程也能积淀出一种经验,这种经验就属于思考的经验。一个数学活动经验相对丰富并且善于反思的学生,他的数学直觉必 然会随着经验的积累而增强。
例如,在研究“比的基本性质”时,教材要求学生根据小冬测量几瓶液体的质量和体积的记录,填写质量和体积的比值,由此启发学生观察等式,联系对分数的基本性质的已有认识进行合情推理,探索比的基本性质。尽管学生对液体质量与体积的比值所表
示的实际意义——“密度”不太了解,但是由于有着对之前学习的商不变规律、分数基本性质的探究经验,大部分学生会产生一个数学直觉,那就是在“比”中也存在类似的性质。“比的前项和后项同时乘或除以相同的数(0除外),比值不变”这个结论便是依据类比的经验得出的。而随即展开的验证活动中,学生也能从过去相关的经验中找到方法上的支撑,因此,教师在这段内容的处理上可以大胆放手。学生类似的经验越丰富,新知就越容易主动纳入到已有的知识体系之中。教师所要做的便是对这些经验进行梳理,帮助学生发现其本质的异同,继而将学生发现的一个个知识“点”连接成一串知识“链”,进而构成牢固的知识“网”。
在上述教学案例中,学生的经验生成是在思维层面进行的,没有依附于具体的情境,仅在头脑中进行合情推理,并且整个过程更趋于有序。从获得的经验类型来看,这类活动中获得的经验相对前两种更侧重策略和方法,也更为理性。从这点上可以看出,思考的经验的获取是派生出思维模式和思维方法的重要渠道,这些成分对学生开展创新性活动具有十分重要的奠基作用。
四、在综合活动中侧重于发展复合、应用的经验。
现实中,许多数学活动都会要求学生有多种经验参与其中,不仅有操作的经验、探究的经验,也有思考的经验,更需要有应用的意识。
例如,下图中的两条线段表示两幢新建的大楼。现在要从A处将煤气送往两幢大楼,并且要使煤气管道的长度尽可能短,你能表示管道的位置吗?
解决这个实际问题需要学生用“从直线外一点到这条直线所作的所有线段中,垂线段最短”的知识来诠释生活中的数学问题。如果学生已经具备了应用的意识,并能顺利地作图解答,那么说明他的相关知识经验已经形成,反之,则说明形成不力。对大多数
学生来说,总是先进行思维上的深思熟虑而后再进行作图设计,最后实践操作。因此,应用的意识是充分建立在学生思考的经验和操作的经验基础上的。正如朱德全教授所指出的,“应用意识的生成便是知识经验形成的标志。”作为数学基本活动经验的核心成
分,应用意识需要教师在教学过程中更多地加以关注和发展。
值得一提的是,越是复杂的数学活动越需要积极的情感意志相伴,这种体验性成分也是学生基本活动经验不可或缺的组成部分,它对于良好人格的塑造具有不可替代的作用。当学生在活动结束后反思其整个解决问题的过程,除了对思考的经验、探究的经验以及具体操作经验有所感悟以外,成功或失败的情绪体验也能逐渐凝聚为其情绪特征的一部分并获得发展。因而,积累学生基本数学活动经验,感性认识、情绪体验及应用意识缺一不可。只有活动经验的均衡发展,才有可能实现学生的全面发展。
『肆』 如何在小学计算教学中帮助学生积累经验
一、引导学生经历自主、多样化的体验过程,积累探究性经验
积累探究经验不是通过简单的活动和思考就可以完成,它更强调的是一种真实的情境,对数学思想方法的学习和体验。因此,教师应精心创设问题情境,组织适度开放的探究性活动,启发学生拓宽思路,多方位、多角度地获取多样化的信息,积累丰富的探究经验。
教学《三角形的面积计算》,每桌学生准备两个信封,一个信封里装有4个不同的三角形(有等腰和不等腰的锐角三角形、直角三角形、钝角三角形),另一个信封里装有2个完全一样的三角形(锐角、直角或钝角三角形)。然后围绕“利用信封中的这些材料剪拼、加工成一个我们学过的图形”的要求,自由操作,自主探究,开放的环节赢得了丰富的课堂回报——有的学生把三角形沿着两边的中点剪开,然后再拼成一个平行四边形;有的先找到三角形两边的中点,然后沿两个中点分别作底边的垂线,再沿垂线剪下两个小的直角三角形,然后补在上面的三角形上成了一个长方形;有的把两个相同
的锐角、直角或钝角三角形拼成一个平行四边形。
从这个单元的教材编排体系来看,这节课具有承上启下的作用。“承上”就是巩固将一个图形割补转化成另一个图形的方法,“启下”就是下一节课将要学习用两个图形拼成一个学过的图形的方法,从学生的思维角度来看,这是两种完全不同的思维方式,可以引导学生从不同的角度思考问题。丰富的材料使得学生的探究更具价值,学生经历了如何割、拼图形进行图形转化的活动经验,积累了从特殊情况出发获得一般性结论的探究经验。
探究经验的获得是一个不断猜想、验证和思辨的过程。为学生创设多样化的、开放性的探究情境,引领学生在广阔的数学背景下自由驰骋,学生所积、累的探究经验将更科学、更丰富。
二、引导学生经历数学对接生活的过程,把生活经验转化为数学经验
学生在生活中已经积累了一些关于数学的原始、初步的经验。对于数学知识的认识和理解,有时需要具有丰富的生活经验背景,让生活经验和数学经验“有效对接”,使得日常生活经验“数学化”。因此,我们要善于捕捉生活中的数学现象,挖掘教学知识的生活内涵,将数学与生活密切联系,让学生亲身经历将生活经验转化为数学活动经验的过程,使学生充分积累“数学化”的活动经验。
学生学习《年、月、日》时,掌握年、月、日的时长不像“分、秒”那样可以现场体验。教师在教学时注意提取学生的生活经验,请学生用生活中经历的一些事情,描述一下一年、一月、一日有多长。学生们纷纷举手发言,有的说:“今年春节到明年春节是一年。”“今年5月7日是我的生日,再到明年的5月7日,我长大了一岁,也就是又过了一年。”“我爸爸这个月发工资到下个月再领工资的时间就是一个月。”“今天这时到明天这时就是一日。”……学生在日常生活中接触年、月、日的经验构成了其进一步学习新知的数学现实,
数学教学要基于学生的生活现实,把这些生活经验进行“数学化”处理,促进学生进行数学思考,以生成新的数学活动经验。生活经验用于帮助经历、体验新知识的形成过程,不仅简单明了,而且生动形象,有利于学生的经验从一个水平上升到更高水平,实现经验的改造或重组。
三、引导学生经历操作与思考的过程,积累有效操作的活动经验
“智慧自动作发端”,动手操作是学生学习数学的重要途径和方法。动手操作能把抽象的知识变成看得见、诽得清的现象,学生动手、动脑、动口参与获取知识的全过程,使操作、思维、语言有机结合,获得的体验才会深刻、牢固,从而积累有效的操作经验。
教学《长方形面积的计算》,教师课前为每个小组准备了一些1平方分米的正方形,然后引导学生展开如下研究活动——
师:在你们的桌上有一个长方形纸板,你们知道它的面积吗?怎样才能知道呢?
生:可以摆面积是1平方分米的正方形。
师:在摆的过程中要注意观察,看看能发现什么?
(学生操作。)
生:我们的摆法是,每行4个,可以摆3行,4乘3是12。那么这个长方形的长是4分米,宽是3分米,面积是12平方分米。
师:你是怎么知道长是4分米,宽是3分米的?
生:每个正方形的边长是1分米,横着摆了4个,所以长是4分米……
然后,教师发给每个小组4个同学大小不同的长方形,用摆正方形的方法求出长方形的面积,并要求学生将数据记录在表中,看看有什么发现。
长(分米)
宽(分米)
面积(平方分米)
(学生操作。)
生1:我沿着长摆了5个正方形,沿着宽摆了3个正方形,所以长是5分米,宽是3分米,面积是15平方分米。
生2:我的摆法很快,只用了7个正方形,我沿着长摆5个,沿着宽再摆2个就行了,也能看出一共摆5乘3等于15个。面积兢是15平方分米。(师生评价)
生3:我这个长方形,长是3分米,宽是2分米,面积是6平方分米。
生4:我发现长方形的面积可能是用长乘宽,但不太确定。
师:我们通过动手摆,求出了这些长方形的长、宽和面积,还有同学对面积的计算方法提出了猜想。
学生“摆”长方形面积的过程,不仅丰富了感觉、知觉的经验,而且也为相互之间的思维碰撞提供了丰富的资源,动手操作不仅仅是直观、形象的“手指运动”,更是丰富、生动的思维活动,并在这一过程中实现操作经验与思考经验、策略性经验的有机融合,积累丰富的数学活动经验。
四、引导学生经历抽象概括的过程,积累抽象概括的经验
抽象概括是形成概念、得出规律的关键手段,也是建立数学模型最为重要的思维方法。学生学习数学,需要充分地经历观察、思考、比较的过程,获取丰富的感性经验,再从许多数学事实或数学现象中舍去个别的、非本质的属性,抽象出共同的本质属性。
教学“加法交换律”,师生通过一系列教学环节得到了如下算式:28+17= 17+28,4+3=3+4,20+40=40+20,82+0=0+82……之后,教师引导学生发现这些算式中共同的规律。
生:把相加的两个数交换之后,它们的结果相等,
师:交换了什么?在加法中的结果可以说成——和。谁来再说一下?
生:交换加数的位置,它们的和不变。
师:说得真好,两个数相加,交换加数的位置,它们的和不变。具有这样规律的等式你们还能写吗?能写出多少个?
生:能写,可以写无数个,
师:看来我们这辈子都无法写完,那怎么办?有更好的办法吗?想一想,也可以商量商量。
学生思考后讨论。
生:我用a+b=b+a表示。a表示加数,b也表示加数,位置交换之后结果还是相等。
师:如此好的办法,真不简单!掌声送给你。
……
许多数学问题在貌似不同的数学情景背后,往往具有相同的思维模型。因此,抽象概括可以加深学生对事物本质的把握,形成一般化的认识,积累了具体问题抽象化、形式化的经验。
五、引导学生经历反思推广的过程,积累情感、思想性经验
数学活动经验是属于学生自己的,带有明显的个性特征,就学习群体而言,数学活动经验又具有多样性,因此,数学活动经验的积累需要学生的自我反思,也需要与同伴展开积极的交流。
教学《平行四边形面积的计算》,在总结环节教师引导:这节课我们研究了平行四边形面积的计算,回忆一下,我们是怎样研究的,中间你有没有遇到哪些困难,又是怎样克服的?学生纷纷发言:我一开始是用数方格的方法计算面积,但太繁了,后来就觉得应该研究更简便的方法;我一眼就看出了从平行四边形中剪下一个三角形,平移到另一边,就转化成长方形,这样通过长方形面积得出平行四边形面积就方便多了;只要沿着高剪开就能转化为长方形,所以不一定是剪三角形,也可以剪梯形;我把平行四边形转化成长方彤后,误以为长方形的长和宽分别相当于平行四边形的两条边,后来在同桌的帮助下发现错了,看来以后学习中还是要细心观察。接着,教师用课件演示将平行四边形转化成长方形的过程,提出问题:下节课我们学习三角形的面积计算,你准备怎么研究?
我们的教学目标不能仅限于一节课,应有长远的眼光,立足使学生终身受益。在平时的数学学习过程中,要引导学生检查自己的思维活动,反思自己是怎样发现、解决问题的,运用了哪些基本的思考方法和技能技巧,有什么好的经验……使学生对数学的理解实现从量的积累到质的飞跃,这种经历生成的思想经验才是最具价值的同时,越是复杂的数学活动越需要积极的情感意志相伴,这种体验性成分也是学生基本数学活动经验不可或缺的组成部分,它对于良好人格的塑造具有不可替代的作用。
数学教学需要让学生亲身经历学习过程,从而获得最具数学本质的、最具价值的数学活动经验。著名教育家陶行知作了这样一个比喻:我们要有自己的经验做“根”,以这经验所发生的知识做“枝”,然后别人的知识才能接得上去,别人的知识方才成为我们知识有机体的一个部分,因此,要让学生在亲历中体验,在体验中累积,让经验的“根”长得更深。
『伍』 培养小学生数学勤学善思考的习惯
培养学生勤于动脑,善于思考的习惯
一般情况下,学生想出比较新颖独特的解题思路,大多是在整个思考过程的后半段时间内形成的。如果教师过早地做出评价,往往会挫伤学生思维的积极性,不利于学生思维的进一步拓展。所以,课堂上教师要善于观察,多方引导,恰当把握时机,发展学生的思维力。
善于思考是学生取得好成绩的本源。教师要培养学生善于思考的习惯,要做到以下几点:
一、勤于积累
扎实广博的知识是思考的前提和基础。思考离不开知识总量的积累,知识掌握得越多,积累越雄厚,思考就越敏捷。要获得丰富的知识,就必须不断积累。可利用电视、网络、阅读各种书籍报刊收集整理知识。丰富的知识是思考的基础。
培养初中生养成课前预习、课后复习的习惯。说到这一点,可能很多老师都觉得自己有做,但关键是看你做实没有。我的预习作业是要求学生在读课文中完成。第一读画出你不认识的字词,然后查字典解决,再把字词抄写在作业本上;第二读要流利的朗读,把握文章的主要内容、主要人物、主要事件;第三读要带着老师的问题去读,去理解课文的内容。这样做了以后,在你上课的时候,学生对课文就比较熟悉了,同时也有自己的看法。
二、勤于学习
做到学思结合,学习是思考的基础,思考是学习的灵魂。孔子曰:”学而不思则罔,思而不学则殆。“学习越勤奋,思考越深刻,收效也就越大。正所谓”学以治之,思以精之“,思考的过程就是学习中消化过程,二者是相辅相成的。
培养初中生养成勤于阅读、勤于积累的习惯。考试中阅读分值占有相当大的比列,而学生做题的效果却不佳,教师对课文”分析“过多,滔滔不绝的讲授”冲“掉学生的各项训练,剥夺了学生自己阅读、感知、理解、消化课文的主动权,”长此以往“,学生在堂上就少了自己阅读实践。至于课外阅读,要么是被繁重的作业负担挤掉,要么放任自流,学生根本不能养成良好的阅读习惯,真正提高阅读能力。我在想让学生真正成为阅读实践的主体,让学生扎扎实实开展课堂内阅读和课外阅读,养成勤于阅读,不断积累知识、经验的习惯。
另外我还打算把以前让学生开展课外阅读活动的方法坚持下去,进一步培养初中生自觉养成开展课外阅读的习惯:A.养成每天阅读佳作的习惯。B.养成每天做阅读记录的习惯。要求学生在阅读名着名篇后,把佳作的作者、梗概等记录下来。这既是一种自我约促,也是一种知识积累。
三、勤于质疑
科学家爱因斯坦说:”提出一个问题往往比解决一个问题更重要,因为解决一个问题也许是一个科学上的实验技艺而已。而提出新的问题、新的可能性,以及以新的角度看旧的问题,都需要有创造性的想象力,而标志着科学的真正进步。“学生的学习是从无疑到有疑,从有疑到无疑的过程。”学起于思,思源于疑。“思考起于疑问,必须善于质疑。古人说:学贵知疑,小疑则小进,大疑则大进;疑者,觉悟之基也。因此,在学习过程中不要迷信和盲从,要不唯书,不唯上,不唯师,只唯实。敢于质疑,敢于否定,带着问题边学习边思考,形成自己独到的见解。
四、掌握一些质疑方法
1.比较质疑法。毛泽东说:”有比较才有鉴别。“比较是一种很好的认识问题的方法。通过纵向、横向知识比较发现问题、提出问题。
2.逆向质疑法。从结论的反方向提出问题,或对现有答案提出问题,或对解题思路提出问题。
3.增减质疑法。对已有的结果尝试再增加或减少一些,会怎么样?
想象质疑法。对知识的学习,不急于得出结论,发挥学生的大胆想象,引导学生边学习边猜想,让学生在想象中质疑。或课的开始,直接对课题展开想象,提出问题。
总之,学生学习的活动,归根到底是思维的活动,只有勤于动脑,肯于思考,才能理解和掌握各科知识,形成各种学习的能力。
『陆』 浅谈小学数学教师应如何帮助学生积累基本活动经验
新一轮基础教育抄课程改革历经袭十年后正进入“再出发”阶段。个人认为,“再出发”的重要标志当属课程标准修订稿的出台。而修订稿与课标相比,很重要的一项变化就是强调在注重数学“基础知识”和“基本技能”的同时,发展数学“基本思想”,积累“基本活动经验”。那么,在小学数学教学中如何帮助学生积累“基本活动经验”呢?下面就此谈谈个人的看法。一、应给学生提供有价值的数学活动这是获得基本活动经验的前提和核心。没有经历数学活动,就谈不上获得数学活动经验。先看一个教学中的例子:把方糖放入下面杯子中,哪杯水最甜?最甜的画“√”。由于学生受知识的负迁移的影响,往往认为放入方糖后第一杯水最甜。这时,我便设计了一个体验活动:把同样大小的方糖放入不同水量的杯中。体验后,学生发现:把同样大小的方糖放入不同水量的杯中,糖全部溶化,水越少,糖水越甜。不仅如此,学生还得出了一个结论:把奶粉、果汁、盐等放入水中,在完全溶化的前提下,也是水越少,相对液体的浓度越高。再看一个我在教学中的案例:“28+4”应该怎么算?
『柒』 如何帮助小学生积累基本的数学活动经验
数学活动经验是学生个人经验的重要组成部分,是学生学习数学、提高数学素养的重要基础之一。回顾、反思日常的课堂教学,我们有时忽视了学生数学学习的过程,学生学习的经验主要被解题经验所替代,学生数学活动经验单一和不足已是一个不争的事实,探寻根源,可能有如下原因:
一是知识与技能的双重挤压。长期以来,以“双基”教学为主要特征的课堂教学理念深深扎根在教师心中。在考试指挥棒的影响下,教学评价检测的都是显性的知识点,新的“双基”没法考或很少考,因此教师一般不关心什么是基本活动经验,怎样去实活动经验的教学。例如推导圆的面积公式,往往是学生看着教师(或课件)演示剪拼圆,而忽略了让学生思考如何才能将圆转化成已经学过的平面图形;忽略了得出结论后,通过大量的巩固、变式及提高练习,提高解题技能。
二是教师专业素养的缺失。教师对数学基本活动经验的认识不足,理解不透,心有余而力不足,无法真正将其作为数学教学关注的目标,因此学生的“伪经历”、“被经历”现象时有存在,浮华的形式主义做法屡见不鲜。学生模仿了“经历”的“形”,而未真正领略其“神”,没有真正的经历,自然无从积累有价值酌活动经验。
杜威认为,“一盎司经验胜过一吨理论”。积累基本数学活动经验是基于“动态的数学观”,把数学看成是人类的一种活动,是一种充满情感、富有思考的经历体验和探索活动。数学基本活动经验可以这样理解:指在数学教学目标的指引下,通过对具体事物进行实际的操作、考察和思考,形成和积累的过程知识。数学基本活动经验有三个要素:第一,是数学的。所从事的活动要有明确的数学目标。第二,是经验的。按《现代汉语词典》的解释,“经验”具有两个方面的含义:一是实践得来的知识或技能;二是经历所以,经验是一种感性认识,包含双重意义,一是经验的事物,二是经验的过程。第三,是活动的。主要指对数学材料的具体操作和探究活动。
数学基本活动经验有两个层面,从静态上看,它是一种从属于学生自己的“主观性知识”,是学生经过数学学习后对整个数学活动过程产生的认识,包括体验、感悟、经验等,虽然这只是学习个体主观上粗浅的、感性的认识,或者是不那么严格的隐性认识,但这种经验是有意义和价值的。从动态上看,它是过程,是经历。积累数学基本活动经验更关注过程的教学,“经历过程”不仅仅是让学生经历知识产生的过程、知识的呈现方式,而且更是指探究的过程、思考的过程、抽象的过程、预测的过程、推理的过程、反思的过程等等,从而积累观察、操作、猜想、归纳、推广等活动经验。
如何开展有效的数学活动,让学生在真正的经历中积累数学活动经验,成为当前数学教学中亟待研究与解决的问题。数学学习中的很多经验是不可传递的,只能靠亲身经历,所以必须让学生积极参与数学活动。
一、引导学生经历自主、多样化的体验过程,积累探究性经验
积累探究经验不是通过简单的活动和思考就可以完成,它更强调的是一种真实的情境,对数学思想方法的学习和体验。因此,教师应精心创设问题情境,组织适度开放的探究性活动,启发学生拓宽思路,多方位、多角度地获取多样化的信息,积累丰富的探究经验。
教学《三角形的面积计算》,每桌学生准备两个信封,一个信封里装有4个不同的三角形(有等腰和不等腰的锐角三角形、直角三角形、钝角三角形),另一个信封里装有2个完全一样的三角形(锐角、直角或钝角三角形)。然后围绕“利用信封中的这些材料剪拼、加工成一个我们学过的图形”的要求,自由操作,自主探究,开放的环节赢得了丰富的课堂回报——有的学生把三角形沿着两边的中点剪开,然后再拼成一个平行四边形;有的先找到三角形两边的中点,然后沿两个中点分别作底边的垂线,再沿垂线剪下两个小的直角三角形,然后补在上面的三角形上成了一个长方形;有的把两个相同
的锐角、直角或钝角三角形拼成一个平行四边形。
从这个单元的教材编排体系来看,这节课具有承上启下的作用。“承上”就是巩固将一个图形割补转化成另一个图形的方法,“启下”就是下一节课将要学习用两个图形拼成一个学过的图形的方法,从学生的思维角度来看,这是两种完全不同的思维方式,可以引导学生从不同的角度思考问题。丰富的材料使得学生的探究更具价值,学生经历了如何割、拼图形进行图形转化的活动经验,积累了从特殊情况出发获得一般性结论的探究经验。
探究经验的获得是一个不断猜想、验证和思辨的过程。为学生创设多样化的、开放性的探究情境,引领学生在广阔的数学背景下自由驰骋,学生所积、累的探究经验将更科学、更丰富。
二、引导学生经历数学对接生活的过程,把生活经验转化为数学经验
学生在生活中已经积累了一些关于数学的原始、初步的经验。对于数学知识的认识和理解,有时需要具有丰富的生活经验背景,让生活经验和数学经验“有效对接”,使得日常生活经验“数学化”。因此,我们要善于捕捉生活中的数学现象,挖掘教学知识的生活内涵,将数学与生活密切联系,让学生亲身经历将生活经验转化为数学活动经验的过程,使学生充分积累“数学化”的活动经验。
学生学习《年、月、日》时,掌握年、月、日的时长不像“分、秒”那样可以现场体验。教师在教学时注意提取学生的生活经验,请学生用生活中经历的一些事情,描述一下一年、一月、一日有多长。学生们纷纷举手发言,有的说:“今年春节到明年春节是一年。”“今年5月7日是我的生日,再到明年的5月7日,我长大了一岁,也就是又过了一年。”“我爸爸这个月发工资到下个月再领工资的时间就是一个月。”“今天这时到明天这时就是一日。”……学生在日常生活中接触年、月、日的经验构成了其进一步学习新知的数学现实,
数学教学要基于学生的生活现实,把这些生活经验进行“数学化”处理,促进学生进行数学思考,以生成新的数学活动经验。生活经验用于帮助经历、体验新知识的形成过程,不仅简单明了,而且生动形象,有利于学生的经验从一个水平上升到更高水平,实现经验的改造或重组。
三、引导学生经历操作与思考的过程,积累有效操作的活动经验
“智慧自动作发端”,动手操作是学生学习数学的重要途径和方法。动手操作能把抽象的知识变成看得见、诽得清的现象,学生动手、动脑、动口参与获取知识的全过程,使操作、思维、语言有机结合,获得的体验才会深刻、牢固,从而积累有效的操作经验。
教学《长方形面积的计算》,教师课前为每个小组准备了一些1平方分米的正方形,然后引导学生展开如下研究活动——
师:在你们的桌上有一个长方形纸板,你们知道它的面积吗?怎样才能知道呢?
生:可以摆面积是1平方分米的正方形。
师:在摆的过程中要注意观察,看看能发现什么?
(学生操作。)
生:我们的摆法是,每行4个,可以摆3行,4乘3是12。那么这个长方形的长是4分米,宽是3分米,面积是12平方分米。
师:你是怎么知道长是4分米,宽是3分米的?
生:每个正方形的边长是1分米,横着摆了4个,所以长是4分米……
然后,教师发给每个小组4个同学大小不同的长方形,用摆正方形的方法求出长方形的面积,并要求学生将数据记录在表中,看看有什么发现。
长(分米)
宽(分米)
面积(平方分米)
(学生操作。)
生1:我沿着长摆了5个正方形,沿着宽摆了3个正方形,所以长是5分米,宽是3分米,面积是15平方分米。
生2:我的摆法很快,只用了7个正方形,我沿着长摆5个,沿着宽再摆2个就行了,也能看出一共摆5乘3等于15个。面积兢是15平方分米。(师生评价)
生3:我这个长方形,长是3分米,宽是2分米,面积是6平方分米。
生4:我发现长方形的面积可能是用长乘宽,但不太确定。
师:我们通过动手摆,求出了这些长方形的长、宽和面积,还有同学对面积的计算方法提出了猜想。
学生“摆”长方形面积的过程,不仅丰富了感觉、知觉的经验,而且也为相互之间的思维碰撞提供了丰富的资源,动手操作不仅仅是直观、形象的“手指运动”,更是丰富、生动的思维活动,并在这一过程中实现操作经验与思考经验、策略性经验的有机融合,积累丰富的数学活动经验。
四、引导学生经历抽象概括的过程,积累抽象概括的经验
抽象概括是形成概念、得出规律的关键手段,也是建立数学模型最为重要的思维方法。学生学习数学,需要充分地经历观察、思考、比较的过程,获取丰富的感性经验,再从许多数学事实或数学现象中舍去个别的、非本质的属性,抽象出共同的本质属性。
教学“加法交换律”,师生通过一系列教学环节得到了如下算式:28+17= 17+28,4+3=3+4,20+40=40+20,82+0=0+82……之后,教师引导学生发现这些算式中共同的规律。
生:把相加的两个数交换之后,它们的结果相等,
师:交换了什么?在加法中的结果可以说成——和。谁来再说一下?
生:交换加数的位置,它们的和不变。
师:说得真好,两个数相加,交换加数的位置,它们的和不变。具有这样规律的等式你们还能写吗?能写出多少个?
生:能写,可以写无数个,
师:看来我们这辈子都无法写完,那怎么办?有更好的办法吗?想一想,也可以商量商量。
学生思考后讨论。
生:我用a+b=b+a表示。a表示加数,b也表示加数,位置交换之后结果还是相等。
师:如此好的办法,真不简单!掌声送给你。
……
许多数学问题在貌似不同的数学情景背后,往往具有相同的思维模型。因此,抽象概括可以加深学生对事物本质的把握,形成一般化的认识,积累了具体问题抽象化、形式化的经验。
五、引导学生经历反思推广的过程,积累情感、思想性经验
数学活动经验是属于学生自己的,带有明显的个性特征,就学习群体而言,数学活动经验又具有多样性,因此,数学活动经验的积累需要学生的自我反思,也需要与同伴展开积极的交流。
教学《平行四边形面积的计算》,在总结环节教师引导:这节课我们研究了平行四边形面积的计算,回忆一下,我们是怎样研究的,中间你有没有遇到哪些困难,又是怎样克服的?学生纷纷发言:我一开始是用数方格的方法计算面积,但太繁了,后来就觉得应该研究更简便的方法;我一眼就看出了从平行四边形中剪下一个三角形,平移到另一边,就转化成长方形,这样通过长方形面积得出平行四边形面积就方便多了;只要沿着高剪开就能转化为长方形,所以不一定是剪三角形,也可以剪梯形;我把平行四边形转化成长方彤后,误以为长方形的长和宽分别相当于平行四边形的两条边,后来在同桌的帮助下发现错了,看来以后学习中还是要细心观察。接着,教师用课件演示将平行四边形转化成长方形的过程,提出问题:下节课我们学习三角形的面积计算,你准备怎么研究?
我们的教学目标不能仅限于一节课,应有长远的眼光,立足使学生终身受益。在平时的数学学习过程中,要引导学生检查自己的思维活动,反思自己是怎样发现、解决问题的,运用了哪些基本的思考方法和技能技巧,有什么好的经验……使学生对数学的理解实现从量的积累到质的飞跃,这种经历生成的思想经验才是最具价值的同时,越是复杂的数学活动越需要积极的情感意志相伴,这种体验性成分也是学生基本数学活动经验不可或缺的组成部分,它对于良好人格的塑造具有不可替代的作用。
数学教学需要让学生亲身经历学习过程,从而获得最具数学本质的、最具价值的数学活动经验。著名教育家陶行知作了这样一个比喻:我们要有自己的经验做“根”,以这经验所发生的知识做“枝”,然后别人的知识才能接得上去,别人的知识方才成为我们知识有机体的一个部分,因此,要让学生在亲历中体验,在体验中累积,让经验的“根”长得更深。
『捌』 如何收集和积累小学二年级数学教学资源
不太明白你是复要在学习上收集还是制在网上收集?如在学习上的哈,就多记那些乘法除法公式,把它抄几面。拿个专门的本子几下。如果是在网上的话,就去下载一些资源吧!把它收录在一个单独的文件夹类。小学的东西很少的,也不难记,而且能够帮助你的人很多的。
汗,楼上看清楚问题了,楼主是想收集教学资源,他是个老师,应该不止于教学的只是,而是教学的手法和经验,有三个途径可供参考:
1、多听老教师的课,多问问;
2、去上一些教师论坛,网上有很多,可以交流心得;
3、现在有很多交流的杂志和报纸,上面也有很多心得体会,可供参考。
还有来网络文库吧!
『玖』 小学数学中怎样积累数学经验,论文
在以往传统课堂上,教师就像演员,教学中不停地讲解、分析,生怕学生没听懂、学不会。学生就像观众,他们作为接受者很难主动参与到知识的研究中去。被动接受会导致学生对数学知识只掌握皮毛,不能深入理解,更不用说灵活运用知识解决实际问题了。传统模式扼杀了学生的主动性和创造性。新课程却强调学习方式的变革和师生角色的转化。在转变过程中,教师由原来的包办代替转变成学生探索数学奥秘的组织者和引导者,学生有足够的时间和空间去研究数学逻辑、探索数字奥秘、思考数学难题、交流数学应用。这样的课堂是“活”的,学生要想适应这样的课堂,就必须具备自己的“经验”。这里所说的经验包括学生已有的生活经验、学习方法、学习习惯等。总之,只要是通过自身努力,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识就可以统称为“经验”。
课堂教学是学生积累数学活动经验的主要阵地,如何在课堂上帮助学生积累数学活动经验,结合多年的教学经验谈谈以下几点做法:
一、重视数学实践活动,积累数学活动经验
活动是经验的源泉,不亲历实践活动就根本谈不上经验。课堂实践活动是学生运用学具按照学习内容和教师要求进行的实际活动,它有助于学生理解和掌握所学知识。心理学家指出,在数学教学中如果能够锻炼儿童的动手操作能力,就可以使学生直接获取感性认识,掌握知识。纸上得来终觉浅,绝知此事须躬行。对于孩子们来讲,动手做始终是他们最欢迎的学习形式,只有学生动手操作、体验积累的数学经验,才能最终沉淀到他们的内心深处,成为一种素质,一种能力,伴其一生,受用一生。
因此,在设计数学活动时,教师可以以学生活动为主线,激发学生主动参与、实践、思考和探索,通过各种动手活动,灵活、有效地解决数学问题,从而在活动中学习和感悟数学,帮助学生积累数学活动经验。如在认识长方形对边相等的特征时我就设计了下列的动手活动:1.拿出你的长方形,可以看一看,摸一摸,看看你发现了长方形的哪些特征?2.这些都是我们的猜测,我们怎样能确定长方形上下两条边是一样长呢?左右两条边呢?学生通过量一量、折一折……很快发现长方形的对边长度是相等的。
“儿童的智慧就在他的手指尖上”,数学活动经验是学生在学习的活动过程中所获得的,离开了活动过程,这个实践过程是不会形成有意义的数学活动经验的。
二、将生活经验转化为数学经验
数学源于生活、根植于生活。数学教学要从学生的生活经验已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。数学看起来很抽象,但在实际生活中数学知识应用的例子却比比皆是。要想帮助学生积累数学活动经验,首先就应将生活当作他们认识发展的活水,在生活中发现数学,把生活素材、生活经验、生活情景作为重要资源,提供给学生们去感受、理解和体验。
1.创设与现实生活情境贴近的教学情境
“让学生在生动具体的情境中学习”是新课程倡导的重要理念之一。创设与现实生活情境贴近的教学情境,既能活跃课堂气氛,激发学生的学习兴趣,又能培养学生的思维能力和想象能力。
如:在教学“认识人民币”这一课时前,我认为人民币的认识离不开现实的换钱、购物活动,就象计算机的学习离不开上机操作一样。于是这节课上我多处创设了换钱、购物情境,让学生在模拟换钱、购物情境中认识人民币。如“小红要买一个1元钱的卷笔刀,可她手里都是角币,有几个1角的、几个2角的、还有几个5角的,她该怎样付钱呢?谁能帮帮她?”,学生根据已有的生活经验,有的说付2 个5 角, 还有的付10 个一角, 也有说付5 个2角等等。又如根据购物要求“只购两种商品,使结果是整元数,应购哪两种?有几种购法?”,在开放的生动的现实情境运用中, 学生将生活经验转化为数学经验,并发展了思维。
2. 创造一些具有“实况性”的学习机会
研究表明,如果教学情境与日后运用知识的情境相类似,那学生学到的知识就更容易迁移,更容易转化为数学经验。因此,在教学过程中,我们要帮助学生尽量多获得一些“实况性”具有挑战性的学习机会,实现“生活问题数学化”和“数学问题生活化”。
例如:在教学二年级“统计”有教师设计了这样的教学过程:1)小记者采访活动,采访你本组中的同学生日在几月,是什么季节的。2)发现并提出问题:学生交流、收集结果,每组人的记录结果会各不相同。教师引导:这么多组的数据,我们怎样才能比较清楚地知道全班同学的生日情况呢?3)合作收集整理制成统计图表,以小组为单位,分工合作,记录、收集他组数据、整理数据。4)展示自己的统计表。
这样的设计,对学生来说,采访交流信息、动手收集和呈现数据是一个生活化并且充满挑战和 乐趣的过程。学生不仅体验了活动过程,学会了与同伴合作交流,更重要的是学会了统计的方法,学会了从数学角度解决实际问题。他们在真正经历“数学化”的过程中积累了数学活动经验。
3.重视学以致用,将生活经验转化为数学经验。
“学以致用”是教育的最终目的。把知识经验提升为策略经验,让学生综合应用自己的生活经验解决问题既是对前一阶段知识与经验的深化与发展,又能实现既长知识又长智慧的目的。
如在教学《列方程解应用题》这一课时,教师创设了“某班要去当地三个景点游览,时间为8:00~16:00,请你设计一个游览计划,包括时间安排、费用、路线等。”学生在解决这个问题过程中,要了解景点之间的路线图,各景点的门票及乘车所需的时间、车型与租车费用,同学喜爱的食品和游览时需要的物品,所需的总费用,每个同学需要交纳的费用等。这样把教材中缺少生活气息的题材改编成了学生感兴趣的、活生生的题目,让学生发现数学就在自己身边,从而促使学生用数学思想来看待实际问题,提高了收集、整理信息的能力。这样不仅让学生用学过的知识来解决日常生活中的问题,而且激发了学习兴趣,提高了学生学以致用的能力,让生活经验转化为数学经验。
三、运用核心问题,发展数学活动经验
问题解决是数学活动的主要形式。数学基本活动经验对于问题解决的顺利进行和数学活动的有效开展有着非常重要的作用,反过来,设置恰当的核心问题,利用核心问题调动学生活动,通过核心问题的解决过程去提升和发展数学活动经验,将有助于学生基本活动经验的获得。
如教学平行四边形面积时,教师先展示了一个平行四边形卡片,然后抛出一系列问题:1.这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?可以转换成什么图形?2.转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?3.我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?在数学课堂中,学生围绕这些问题开展小组探究活动,他们动手操作、自主探究、合作交流,直接指向问题的解决,学生不仅在活动中有体验,在活动前、活动中、活动后都经历着数学思考,使数学活动经验得到发展。
总之,数学活动经验的积累来源于学生已有的生活经验,来源于师生的互动实践,来源于对知识的理解和掌握程度。我们应当以帮助学生积累基本的数学活动经验来带动数学知识的学习,从而让数学课堂从形式走向实效。
『拾』 如何帮助小学生积累基本的数学活动经验
随着数学新课程对“过程与方法”的关注,“数学基本活动经验内”日益成为数学教育的一容个热门话题。人们对其内涵、组成、教育意义等都进行了深入的探讨。但如何在实际教学中帮助学生有效地积累数学基本活动经验,仍值得研究。本文略提几点想法,求教于大家。 一、在操作活动中侧重于丰富来自感官、知觉的经验。 “基本活动经验是个体在经历了具体的学科活动之后留下的、具有个体特色的内容,既可以是感觉知觉的,也可以是经过反省之后形成的经验。”在数学活动中,学生通过外显的行为操作,对学习材料的第一手直观感受、体验和经验一般是直接经验。这类操作的直接价值并不是问题的解决,而是对学习材料的感性认识。