㈠ 小学数学论文题目大全
学术堂整理了十个毕业论文题目供大家进行参考:
1、小学数学教师几何知识掌握状况的调查研究
2、小学数学教师教材知识发展情况研究
3、中日小学数学“数与代数”领域比较研究
4、浙江省Y县县域内小学数学教学质量差异研究
5、小学数学教师教科书解读的影响因素及调控策略研究
6、中国、新加坡小学数学新课程的比较研究
7、小学数学探究式教学的实践研究
8、基于教育游戏的小学数学教学设计研究
9、小学数学教学中创设有效问题情境的策略研究
10、小学数学生活化教学的研究
㈡ 小学数学论文大全六百字
论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献和附录和致谢。
下面按论文的结构顺序依次叙述。
题目
(一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
署名
(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。
引言
(三)论文——引言是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。
材料方法
(四)论文——材料和方法按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。
实验结果
(五)论文——实验结果应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据、不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。
实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。
㈢ 小学数学教育方向的论文标题有哪些
[数学论文] 如何培养学生学习数学的兴趣[原创]
[数学论文] 数学概念学习的几种方法[原创]
[数学论文] 简谈分数“1/2”和小数“0.5” 的重要性与三重性质[原创]
[数学论文] 简谈分数“1/2”和小数“0.5”的重要性与三重性质[原创]
[数学论文] 创造性思维与数学教学探究[原创]
[数学论文] 小学数学应用题的规律[原创]
[数学论文] 浅谈小学应用题教学的一般规律[原创]
[数学论文] 浅议现代教育技术与高中数学教学整合的教学模式
[数学论文] 浅议新课程标准下高中数学教学
[数学论文] 如何在数学教学过程中培养和激发学生学习的兴趣
[数学论文] 数学家庭作业分层
[数学论文] 试论数学课堂教学中教师的角色定位
[数学论文] 职业高级中学数学教学方法初探
[数学论文] 自然灾害预测与预警机制探索[原创]
[数学论文] 如何激发学生想学数学
[数学论文] 基于单片机的自动节水控制系统
[数学论文] 三角函数的解题应用
[数学论文] 如何培养和激发学生学习数学的兴趣
[数学论文] 小学数学课堂应该对学生创造性思维进行培养
[数学论文] 五论《数学基础》数值逻辑有理数系基本理论自身的深刻变革
[数学论文] 为什么1+1=2?!——试论《数学基础》有理数系数值逻辑基本理论自身的深刻变革
[数学论文] 解析变换的特性
[数学论文] 小学应用题七环教学法
[数学论文] 创设良好的学习环境,营造创新教育氛围
[数学论文] 时空箴言
㈣ 小学数学课堂提问的论文题目有哪些
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性
㈤ 谁能给几个好的关于小学数学方面的论文题目,最好是根据最新小学数学教学指导大纲的,谢谢
关于最短路径问题、房间分配问题、轮船顺逆水问题
㈥ 谁能给些好的小学数学论文题目
这里搜集了一些小学数学教学论文题目,仅供参考。
1、课堂有效提问的初步探究
2、小学数学数与计算教学的回顾与思考
3、小学数学教材结构的研究与探讨
4、小学数学应用题的研究
5、改进教学方法培养创新技能
6、使学生真正成为学习的主人
7、改革课堂教学的着力点
8、谈素质教育在小学数学教学中的实施
9、素质教育与小学数学教育改革
10、浅谈学生数学思维能力的培养
11、实施创新教学策略,培养学生创新意识
12、10以内加法整理和复习
13、改良“有余数除法计算”教法
14、给学生创新的时间和空间
15、谈谈计算教学的改革
16、面向21世纪的数学素质及其培养
17、能被3整除的数的特征
18、年、月、日
19、培养自学能力,推进素质教育
20、浅谈小学数学总复习的“步步反馈,逐层提高”法
21、入情才能入理 激情方能启思
22、实施“生活数学”教育,培养自主创新能力
23、数学作业批改中巧用评语
24、提高认知水平,培养自学能力
25、圆的面积”的教案
26、圆柱的认识
27、运用多媒体辅助教学,优化数学教学方法
28、组织课堂讨论 优化课堂教学
29、重视学生获取知识的思维过程
30、小论文巧算圆的面积
31、联系生活实际提高课堂效率
32、数学教学中如何调动学生的学习积极性
33、根据心理学的理论进行计算法则教学
34、简单应用题教学再探
35、创设情境,培养学生创造个性
36、学生“四会”能力的培养
37、营造探究氛围一例
38、实施创新教育 培养创新人格
39、《9和几的进位加法》教学设计
40、信息技术与小学数学
41、合理运用学具 提高数学课堂教学效率
42、略谈“问题解决”与小学数学教学
43、渗透数学思想方法 提高学生思维素质
44、引导学生参与教学过程 发挥学生的主体作用
45、培养学生的创新意识要处理好的几个关系
46、浅谈“数形结合”在小学低段数学教学中的应用
47、借助学具,提高数学课堂效率
48、对数学新课程理念下练习课教学的几点思考
48、多通道促进数学课堂公平
50、上“活”概念课,灵动新课堂
51、对学生数学作业订正现状调查分析及对策
52、对小学数学动态生成式课堂结构的认识
53、对新课程中估算教学的几点想法
54、谈小学应用题教学如何为学生自主探索创造条件
55、小学数学课堂中的口头评价
56、让新理念成为把握教材的支撑点
57、立足现实起点,提高课堂效率
58、谈课堂教学中有效情境的创设
59、提高数学课堂教学效率之我见
60、为学生营造一片探究学习的天地
㈦ 小学数学练习设计的策略的论文题目有哪些
你好,对于撰写小学数学课改论文,可以从以下方面入手:一、从备课的角度撰写。如:《小学数学应该题教学的过程与策略》、《小学数学概念课课堂教学结构初探》等。二、从上课的角度撰写。如:《如何进行小学数学课堂教学反馈》、《小学数学如何创设情境》、《多媒体在小学数学教学中的应用》等。三、从辅导的角度撰写。如:《浅议小学数学中年级作业批改》、《小学数学学困生的学习指导》等。四、从对新的课改理念的理解入手。如:《浅议小学数学课堂教学中的自主学习》等。
㈧ 小学数学论文题目要有创意和50字介绍。
为您奉上一部分,请参考:
谈谈计算教学的改革
小学数学数与计算教学的回顾与思考
小学数学教材结构的研究与探讨
小学数学应用题的研究(一)
改进教学方法培养创新技能
21世纪我国小学数学教育改革展望
面向21世纪的小学数学课程改革与发展
不拘一格育“鸣凤”
使学生真正成为学习的主人
㈨ 小学数学论文,给几篇例文
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
关于小学数学课堂教学评价的构想
素质教育要求教师充分挖掘每个学生的潜能,以促进学生素质的全面提高。为此,在小学数学课堂教学中 就要落实“掌握知识、发展智能、陶冶情操”的三维教学目标,使学生成为既有丰富的知识,又有高尚人格的 主体性的一代新人。这里的所谓人格,是指学生的能力特征和品德特征的总和。这不仅是小学数学课堂教学的 奋斗目标,也是督导评估小学数学课堂教学的依据。现就小学数学课堂教学评价问题,构想如下:
一、对小学数学课堂教学总体评价的构想
1.教学指导思想是否符合现代教学论原则;通过教与学双边活动是否充分调动全体学生的认识过程、情感 过程和意志过程。以促进每个学生掌握知识,培养和提高各种数学能力,完善人格,获得全面的发展。
2.教学目的要求和教学内容的确定是否有利于全体学生比较系统地掌握小学数学最佳知识结构。即,那些 最基本、最具有代表性的概念、法则、规律、公式和数学思想组成的知识系统,并且是按照小学生身心发展规 律,能被小学生所接受、理解、难易适度的知识系统。
3.教学过程的设计是否有利于学生对知识的理解、技能的形成、潜在智能的开发和提高;是否通过“获得 知识”和“应用知识”两种途径培养和形成学生良好的观察能力、思维能力、分析和解决问题的能力,以及动 手操作和数学语言表达能力。
4.在课堂教学中是否既突出“面向每一个学生,面向学生的每个方面”的落实,又兼顾“因材施教”的推 进。
5.课堂教学是否较好地体现了“认知结构”、“教材结构”、“教学结构”三者和谐一致的整体关系。
6.全体学生在求知的全过程中,兴趣、情感、信念、意志、性格等非智力因素投入的质量与程度如何,发 展趋向是否有利于学生形成良好的心理品质。
7.进行“知识”与“能力”方面的课时教学效果的量化测试和“智能”与“情意”方面相应的课外跟踪考 查结合。
二、小学数学课堂教学“三维教学目标”评价的构想。
(一)对“掌握知识”的评价构想。
实施素质教育,并不是要改变知识及其应用在课堂教学中的核心地位,并非要降低小学数学课堂教学的质 量,而是对小学数学课堂教学质量所涉及的内容提出了更高、更加广泛的要求。因此,在教学中应该把知识的 形成过程放在教学的首位,使学生经历真正的认知过程,获得具有生命力的有用的知识,掌握具有迁移的生动 的活泼的知识结构。那么,应该如何评价小学数学课“掌握知识”的教学,笔者认为应包括以下内容:
1.“感知、理解新知”的评价内容。
①为导入新知所提供的感知材料是否充实;
②感知材料的选择是否包罗新知的本质属性;
③感知阶段的诱导是否便于学生尽快进入新知的最近发现区,展开求知探索;
④新、旧知识交接点的确定,是否便于快速促成学生认知的正迁移,教师的点拨是否有助于激起学生“短 兵相接”的思维交锋,顺利完成认知的“同化”或“顺应”;
⑤教学辅助手段的使用,是否有利于学生省时优质地发现和理解新知的本质。
2.“抽象、概括新知”的评价内容。
①思维阶梯的铺设是否有助于学生在揭示新知本质的求知过程中,展开高效的观察与比较、分析与综合、 判断与推理、抽象与概括。
②学生在归纳总结新知的过程中是否经过了一个以具体形象思维为支柱,向抽象逻辑思维过渡,又将已理 解的抽象概念具体化的认知往返历程。
③学生对已概括的新知理解得是否正确、全面、深入;学生对新知本质抽象概括得是否正确、全面、深入 浅出,表述具体严谨;是否达到了课时教学规定的教学目标。
④学生在探求、获取新知中个性意识倾向性作用的发挥如何,全员参与的竞争质量与程度怎样。
⑤教师指导学生求知获取的“投入”与学生学会求知方法,得到收获的“产出”是否成正比。
(二)对“发展能力”的评价构想。
能力的发展只能在掌握知识的过程中获得,离开知识,能力就成了空中楼阁。“发展能力一定要结合知识 的传授过程去进行,知识有其能力价值,它凝聚在知识之中,不思则暗,深思则宽,不着重分析挖掘,不在知 识传授过程中充分发挥,就会落空。”发展能力必须结合知识体系有目的、有计划,有序列,有层次地由低级 向高级逐步提高。练,是形成和发展能力的主要途径。因此,就小学数学综合课“发展能力”的评价而言,应 包括下列内容:
1.对课堂“半独立性练习”层次的评价内容。
①给出的题目是否属于紧扣新知要点的基本型题目;是否便于全体学生直接运用新知,起到巩固理解,强 化记忆的作用。
②教师在指导学生运用新知的过程中,是否立足于学生主动积极地解决问题,以思维能力的训练为核心, 突出基本技能的形成,“扶”与“放”适度,不包办代替学生对新知的再现。
③学生运用新知解答基本型题目的技能和叙述算理,或法则或解题思路的语言表达能力是否达到规定的教 学目标。
④教师在本阶段的课堂小结是否切中由学生板演和课堂巡视所反馈问题的要害;“结语”是否有助于学生 对新知要点的再现和发展。
2.对课堂“独立性练习”层次的评价内容。
①本阶段习题设计是否由三类不同要求的题构成;这些题目的编排是否便于培养和提高学生独立运用知识 解决问题的能力。三类题目的要求如下:
低档题:比基本型题目稍有变化,其目的是让学生独立运用新知解题形成技能,加深对新知的理解和记忆 。
中档题:以新知为主体的综合型题目,题目的编排既突出适度的综合性,又带有一定的思考性色彩,用以 培养和训练学生解题的综合能力和灵活性。
高档题:思考性较强,略有难度的题目。这类题目不超越学生的知识范围和思维能力的限制,用以解决“ 吃不饱”学生的心理需求和“吃得饱”学生竞争意识的激励,推进学生的求知欲和好胜心。
②在本阶段中, 教师是否给予学生充足的独立练习时间(区间为10至15分钟);是否较好地完成本阶段课 时教学任务,达到规定的教学目标。
3.对“独立练习交流与课堂总结”层次的评价内容。
①教师在组织学生进行独立练习交流中,是否为学生创设了宽松、和谐、自信、民主的课堂氛围。
②教师对学生的解题交流与评定是否立足于培养学生思维的求异性、广阔性、创造性;是否致力于培养学 生勇于探索、不断进取、一丝不苟、精益求精的学习品质。
③师生合作的课堂总结是否提纲挈领,简明扼要,便于学生回顾求知过程,掌握新知要点,获得求知启迪 。
(三)对“陶冶情操”的评价构想。
人的智力商数是先天已有的,而情意商数却是后天的培养和努力的结果。科学界已提出:一个人的“智商 ”只占其成功要素的20%,真正决定人类智慧的不是“智商”,而是“情商”。因此,一个具有主体性的人, 其核心素质是高尚的人格。通过小学数学课堂教学去陶冶学生应具备的道德情操、科学品质,已是当务之急。 为此,学生在求知过程中情意因素投入的质量与程度,应当作为评价教师课堂教学水平的一项重要内容。应该 评价教师在课堂教学中,是否把“陶冶情操”与“掌握知识”、“发展能力”同步进行,有机结合;是否做到 为此不遗余力,持之以恒。
总括起来说,学生的“认识过程”、“情感过程”和“意志过程”是紧密联系在一起的三个方面。学生从 事学习的正确认识是情感活动和意志活动的基础;良好的情感又能推进学生的认识和行动;而坚强的意志则能 使学生锲而不舍地提高认识和陶冶情操,去完成既定的学习任务。评价学生的“认识过程”,旨在界定学生揭 示事物的本质以及事物间的关系和规律的水平,为教师提供课堂教学改革的信息,有助于在教学中更好地发挥 教师的主导作用和学生的主体性,促进学生掌握知识,获得智力技能和开拓学生的创造能力。评价学生的“情 感过程”,在于使教师在课堂教学中更加重视学生良好的情感和情操的培养。评价学生的“意志过程”,使教 师明确良好的意志品质是学生成才的必备素质,在教学中加强砥砺学生意志的教学力度,使学生具有高尚的学 习目的,在求知中胜不骄,败不馁,知难勇进,百折不挠,不达目的决不罢休。
据上所述,小学数学课堂教学应该围绕学生的“认识过程”、“情感过程”和“意志过程”去评价教与学的双边活动
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
㈩ 我要个小学生的数学论文的题目 谢了
数学论文
一、数学技能的含义及作用
技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。
数学技能在数学学习中的作用可概括为以下几个方面:
第一,数学技能的形成有助于数学知识的理解和掌握;
第二,数学技能的形成可以进一步巩固数学知识;
第三,数学技能的形成有助于数学问题的解决;
第四,数学技能的形成可以促进数学能力的发展;
第五,数学技能的形成有助于激发学生的学习兴趣;
第六,调动他们的学习积极性。
二、数学技能的分类
小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。
l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。
2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。
第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。
第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。
第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。
三、数学技能的形成过程
1.数学操作技能的形成过程。
数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。
(1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。
(2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。
(3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。
(4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。
2.数学心智技能的形成过程。
关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。
(1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。
(2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。
(3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。
(4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。
四、数学技能的学习方法
1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。
2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷12.5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效