㈠ 小学数学公开课一般用什么音乐
不太清楚大概是:
轻柔的;柔和的;好听的
钢琴曲,小夜曲等
晨光 追梦人 初雪 夏日华尔兹
㈡ 谁知道跟数字有关的歌曲
1、《123我爱你》歌手:新乐尘符
《123我爱你》是新乐尘符演唱歌曲,由孟君酱作词,专江潮作属曲,发行于2017年12月25日。
㈢ 有哪些歌曲和歌词是和数学,几何或者计算之美有关的
《哥德巴赫猜想》 歌手:后弦 专辑:古·玩
著名的歌德巴赫猜想和流行歌曲有关联吗,在回这答首歌中,两者之间被赋予了奇妙的联系,两个人一加一的感情复杂困惑,就算大师猜一辈子也没结果,《哥德巴赫猜》做了一次古典R&B的大胆尝试。歌曲以一段十八世纪西方古典钢琴曲为开头,随即加入浓重R&B节奏,到高潮时甚至加入ng风格,做了一次新的尝试,过门和结尾出跳出的钢琴吉他协奏,配上了戏曲腔调的吟唱,让整首歌曲充满了东西方大胆碰撞的火花。
歌词:
歌德巴赫,沉思眉头紧锁
两个素数的和,一个假设,一七四二
数学方程传说,机关算尽怎么,难以突破?
简单复杂,两个人的几何,
推了又敲能有,什么结果,简单的谜
古今乐此不疲,算术大师的困惑
句句承诺,订下铁锁,信誓旦旦却又双双未果
哥德巴赫猜,猜不破情谜未来
哥德巴赫猜,三十六计走为上
哥德巴赫猜,脑袋半火一半海
哥德巴赫猜,他猜到头发已发白
多少,一加一的爱,哥德巴赫猜,有点无奈
算了,没结果也好,传说中真实的味道
㈣ 求几个跟小学数学有关的节目,六一节表演用
1+1=几?
1.王
2.在错误的情况下等于3等于4等于5等于6等于7等于8等于9等于10·····
3.1+1=2
4.1+1=天才文专学程度
5.1+1是文属学的基础回答=2
有一天,黑社会老大问你:“1+1等于几?” 你很纳闷犹豫了很久说:“等于2。... 老大吹了吹枪口的烟说:“你知道的太多了!”
㈤ 有关数学的歌曲初三
歌词如下:来
某一天 在梦里 梦见源 坐标系上一点
像流星般 划过 轨迹成线
我思念 数与形结合的瞬间
函数解析式出现 我眼前
点在图象上 坐标入方程
一次函数的图象是条直线
正比例函数的图象 必过原点
y等于kx是解析式 k叫做斜率
斜率为正直线过一三象限
斜率是负的直线就过二四象限
k的绝对值越大直线越陡 反之直线越平
啊 一次函数解析式 y等于kx+b k不为零
啊 其中b叫做截距 决定与y轴交点
截距就是那 直线和y轴 交点纵坐标
平移时上加下减
左右平移 在x上左加右减
平行直线的斜率相等 两条直线垂直
它们的斜率互为负倒数
两直线 相交的交点坐标是
解析式联立方程组的解
公理说 过两点有且只有一条直线
所以由直线上两点 能求 解析式
把两点 的坐标代入解析式
解关于k和b的方程组
函数大于零 取横轴上方
啊 一次函数的斜率 等于和横轴夹角的正切值
啊 斜率三分之根三 就有三十度角
斜率根号三 可以找等边 斜率正负一
就找等腰直角
一次函数 三种解析式都要记牢
㈥ 求音乐:有关数学的音乐
数学与音乐 文章来源:《数学通报》 在这一轮课程改革中,“数学与文化”成为了数学和数学教育工作者最为关注的问题之一. 实际上,在很长一段时间内,许多数学和数学教育工作者已经在思考和研究这个问题, 在即将推行的“高中数学课程标准”中,明确的要求把“数学文化”贯穿高中课程的始终. 对于涉及“数学文化”的一系列理论问题,应该承认还没有讨论得很清楚, 还有很多的争论,例如,很多学者对“数学文化”这个说法也有疑义,我们认为这是很正常的. 对这些问题的研究,我们建议从两个方面同时进行, 一方面进行理论上的研究;另一方面,积极地开发一些“数学与文化”的实例,案例,课例,探索如何将“数学文化”渗透到课堂教学中,如何让学生从“数学文化”中提高数学素养, 在此基础上再进行一些理论上的思考,从实践到理论,做一些实证研究. 下面是我们提供的一个实例 ———数学与音乐,也可以看作一个素材,很希望工作在一线的教师能作进一步的开发,能使这样的素材以不同的形式进入课堂或课外活动.我们也希望有更多的人来开发这样的素材, 并希望这些素材能出现在教材中. 在数学课程标准的研制过程中,我们结识了一些音乐界的专家,他们给我们讲述了很多音乐和数学的联系,数学在音乐中的应用,他们特别强调,在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学. 他们还告诉我们,在音乐界,有一些数学素养很好的音乐家为音乐的发展做出了重要的贡献. 他们和我们都希望有志于音乐事业的同学们学好数学,因为在将来的音乐事业中,数学将起着非常重要的作用. 《梁祝》优美动听的旋律《,十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫 ……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系? 其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来[1]. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生了 , 而且在西方音乐界占据了统治地位. 虽然托勒密(C. Ptolemy ,约100 —165 年) 对毕达哥拉斯音阶的缺点进行了改造 ,得出了较为理想的纯律音阶(the Just Scale) 及相应的调音理论 ,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶(the temperedScale) 及相应的调音理论出现才被彻底动摇. 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子.地员篇》和《吕氏春秋.音律篇》中分别有述;明代朱载 (1536 - 1610) 在其音乐著作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义 ?内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次.由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学.乐谱的书写离不开数学. 看一下乐器之王 ———钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个 C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键 ,而 5 个黑键分成 2 组 ,一组有 2 个黑键 ,一组有 3 个黑键.2、3、5、8、13 恰好就是著名的斐波那契数列中的前几个数. 如果说斐波那契数在钢琴键上的出现是一种巧合, 那么等比数列在音乐中的出现就决非偶然了: 1、2、3、4、5、6、7、i等音阶就是利用等比数列规定的. 再来看图1,显然这个八度音程被黑键和白键分成了12个半音,并且我们知道下一个 C键发出乐音的振动次数(即频率) 是第一个 C 键振动次数的 2倍,因为用2 来分割,所以这个划分是按照等比数列而作出的. 我们容易求出分割比 x ,显然 x 满足 x12= 2 ,解这个方程可得 x 是个无理数 , 大约是 1106.于是我们说某个半音的音高是那个音的音高的1106 倍 ,而全音的音高是那个音的音高 11062 倍. 实际上,在吉它中也存在着同样的等比数列[3]. 音乐中的数学变换. 数学中存在着平移变换,音乐中是否也存在着平移变换呢 ?我们可以通过两个音乐小节[2]来寻找答案. 显然可以把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移, 这实际上就是音乐中的反复. 把两个音节移到直角坐标系中,那么就表现为图 3. 显然,这正是数学中的平移. 我们知道作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的. 比如, 图 4 就是西方乐曲 When the Saints GoMarching In 的主题[2] ,显然 ,这首乐曲的主题就可以看作是通过平移得到的. 如果我们把五线谱中的一条适当的横线作为时间轴(横轴 x) ,与时间轴垂直的直线作为音高轴(纵轴y) ,那么我们就在五线谱中建立了时间 - 音高的平面直角坐标系. 于是, 图 4 中一系列的反复或者平移,就可以用函数近似地表示出来[2] , 如图 5 所示,其中 x 是时间, y 是音高. 当然我们也可以在时间音高的平面直角坐标系中用函数把图2中的两个音节近似地表示出来. 在这里我们需要提及十九世纪的一位著名的数学家,他就是约瑟夫.傅里叶 (Joseph Fourier) ,正是他的努力使人们对乐声性质的认识达到了顶峰. 他证明了所有的乐声, 不管是器乐还是声乐, 都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和[1]. 音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等. 图6 的两个音节就是音乐中的反射变换[2]. 如果我们仍从数学的角度来考虑,把这些音符放进坐标系中, 那么它在数学中的表现就是我们常见的反射变换,如图 7所示. 同样我们也可以在时间 - 音高直角坐标系中把这两个音节用函数近似地表示出来. 通过以上分析可知,一首乐曲就有可能是对一些基本曲段进行各种数学变换的结果. 大自然音乐中的数学. 大自然中的音乐与数学的联系更加神奇,通常不为大家所知. 例如[2] , 蟋蟀鸣叫可以说是大自然之音乐,殊不知蟋蟀鸣叫的频率与气温有着很大的关系,我们可以用一个一次函数来表示:C = 4 t – 160。其中 C代表蟋蟀每分钟叫的次数, t 代表温度.按照这一公式,我们只要知道蟋蟀每分钟叫的次数,不用温度计就可以知道天气的温度了! 理性的数学中也存在着感性的音乐. 由一段三角函数图像出发,我们只要对它进行适当的分段,形成适当的小节, 并在曲线上选取适当的点作为音符的位置所在,那么就可以作出一节节的乐曲. 由此可见,我们不仅能像匈牙利作曲家贝拉 .巴托克那样利用黄金分割来作曲,而且也可以从纯粹的函数图像出发来作曲. 这正是数学家约瑟夫.傅里叶的后继工作,也是其工作的逆过程. 其中最典型的代表人物就是20 世纪20 年代的哥伦比亚大学的数学和音乐教授约瑟夫 .希林格(JosephSchillinger) ,他曾经把纽约时报的一条起伏不定的商务曲线描述在坐标纸上,然后把这条曲线的各个基本段按照适当的、和谐的比例和间隔转变为乐曲,最后在乐器上进行演奏, 结果发现这竟然是一首曲调优美、与巴赫的音乐作品极为相似的乐曲[2] !这位教授甚至认为,根据一套准则,所有的音乐杰作都可以转变为数学公式. 他的学生乔治 .格什温(George Gershwin) 更是推陈出新, 创建了一套用数学作曲的系统, 据说著名歌剧《波吉与贝丝》(Porgy and Bess) 就是他使用这样的一套系统创作的. 因而我们说, 音乐中出现数学、数学中存在音乐并不是一种偶然,而是数学和音乐融和贯通于一体的一种体现. 我们知道音乐通过演奏出一串串音符而把人的喜怒哀乐或对大自然、人生的态度等表现出来,即音乐抒发人们的情感, 是对人们自己内心世界的反映和对客观世界的感触,因而它是用来描述客观世界的,只不过是以一种感性的或者说是更具有个人主体色彩的方式来进行. 而数学是以一种理性的、抽象的方式来描述世界,使人类对世界有一个客观的、科学的理解和认识, 并通过一些简洁、优美、和谐的公式来表现大自然. 因此可以说数学和音乐都是用来描述世界的,只是描述方式有所不同,但最终目的都是为人类更好地生存和发展服务,于是它们之间存在着内在的联系应该是一件自然而然的事. 既然数学与音乐有如此美妙的联系,为何不让我们沉浸在《梁祝》优美动听的旋律中或置身于昆虫啁啾鸣叫的田野里静下心来思考数学与音乐的内在联系呢 ?为何不让我们在铮铮琵琶声中或令人激动的交响曲中充满信心地对它们的内在联系继续探索呢 ? 上面,我们提供了一些数学与音乐联系的素材,如何将这些素材“加工”成为“数学教育”的内容呢?我们提出几个问题仅供教材编写者和在一线工作的教师思考. 1) 如何将这样的素材经过加工渗透到数学教学和数学教材中 ? 2) 能否把这些素材编写成为“科普报告”, 在课外活动中,向音乐和数学爱好者报告,调查,了解,思考这样的报告对学生的影响以及学生对这样的报告的反映. 若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。 乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。 除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。 毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=kx形式的方程描述,式中k>0。一个例子是y=2x。它的坐标图如下。 不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状。 19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。 傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来。音高与曲线的频率有关,音量和音质分别与周期函数①的振幅和形状有关。 如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展。数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的。许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较。电子音乐复制的保真度也与周期曲线密切相关。音乐家和数学家将继续在音乐的产生和复制方面发挥同等重要的作用。 上图表示一根弦的分段振动和整体振动。最长的振动决定音高,较小的振动则产生泛音。 ①周期函数即以等长区间重复着形状的函数。
㈦ 小学生校园经典歌曲有哪些
1、《采蘑菇的小姑娘》这首歌写于1982年,首唱是歌唱家朱逢博,后经靳小才演唱后受到人们的欢迎,是一首经典的中国儿童歌曲。整首歌曲节奏欢快,在念的语调中找到音乐旋律。
2、《卖报歌》是音乐家聂耳创作于二十世纪三十年代的一首脍炙人口的儿童歌曲。乐曲曲调简单,朗朗上口,曲调明快、流畅,以朴实生动的语言,辛辣诙谐的笔调,深刻地描述了旧社会报童的苦难生活及对光明的渴望。
3、《雪绒花》(Edelweiss)是美国电影和音乐剧《音乐之声》中的著名歌曲,于1959年面世。理查德·罗杰斯作曲,奥斯卡·汉默斯坦二世作词。
4、《数鸭子》是一首有五乐句构成的一段体歌曲,C大调,4/4拍,歌曲以“数鸭子”的形式劝诚少年儿童珍惜时光,好好学习。填词王家桢,谱曲胡小环。歌词通俗易懂,具有趣味性。
5、《种太阳》由李冰雪填词,王赴戎、徐沛东作曲的一首儿童歌曲,表达了少年儿童要使世界变的更加温暖、明亮的美好愿望。发行时间1988 歌曲原创银河少年电视艺术团。
㈧ 适合小学六年级的歌曲有哪些
如:抄《歌唱祖国》、《袭同一首歌》、《年轻的朋友来相会》、《明天会更好》、
《朋友》、《祝福》、《我最响亮》、《隐形的翅膀》、《干杯朋友》、
《友谊地久天长》、
㈨ 有没有关于数学的歌
金莎 平行线
不安全当你说她笑得有多甜
怎么现在才发觉
这种感觉多么明显内
突然间快乐
就此搁浅容在你和我之间
我们像是两条平行线
永远不能坦白面对面
我在你的左边你在右边
没有交叉点
我们只是两条平行线
走多远都没有碰面的终点
而泪水只能含在心里面
我害怕模糊了视线
㈩ 关于数学的歌
伤的双曲线
——王渊超
如果我是双曲线
你就是那渐近线
如果我是反比例函数
你就是那坐标轴
虽然我们有缘
能够生在同一个平面
然而我们又无缘
慢慢长路无交点
为何看不见
等式成立要条件
难到正如书上说的
无限接近不能达到
如果我是双曲线
你就是那渐近线
如果我是反比例函数
你就是那坐标轴
虽然我们有缘
能够生在同一个平面
然而我们又无缘
慢慢长路无交点
为何看不见
等式成立要条件
难到正如书上说的
无限接近不能达到
为何看不见
明月也有阴晴圆缺
此事古难全
但愿千里共婵娟
此事古难全
但愿千里共婵娟
歌手名:刘菲
专辑名:Lilith
匹配时间为: 3 分 45 秒 的歌曲
刘菲 - 爱情算式
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽
方程一直迅速在升级
一元二元三次元
符号多得乱了我眼睛
平方开方再立方
遵循那些复杂的定义
使用已经确定的公理
绕口的术语
严守逻辑
吵架时都变成无理数
甜蜜时又变成同类项
搞不好来个三角函数
算都算不清
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽
方程一直迅速在升级
一元二元三次元
符号多得乱了我眼睛
平方开方再立方
遵循那些复杂的定义
使用已经确定的公理
绕口的术语
严守逻辑
吵架时都变成无理数
甜蜜时又变成同类项
搞不好来个三角函数
算都算不清
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽
OS:爱情的算式,可能是世界上最大的难题,
U&ME,要是能算出个所以,一定能拿诺贝尔奖金。
吵架时都变成无理数
甜蜜时又变成同类项
搞不好来个三角函数
算都算不清
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽
加减乘除在一起
爱情算式叫人伤脑筋You see
不能够全靠小聪明
加减乘除我和你
大于小于还是约等于 Tell me
答案要肯定
爱情无穷尽