导航:首页 > 小学学科 > 2013小学数学新课标

2013小学数学新课标

发布时间:2020-12-25 10:39:02

『壹』 小学数学新课标的主要内容有哪些

截止2018年目前小学数学新课标的主要内容如下:

  1. 义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。

  2. 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

  3. 内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

  4. 由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。

『贰』 小学数学新课程标准2013版是哪个出版社

浙江教育出版社吧

『叁』 小学数学的新课标是什么

小学数学新课程标准

第一部分 前 言

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得 数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念
1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:
--人人学有价值的数学;
--人人都能获得必需的数学;
--不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
6.现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
二、设计思路
(一) 关于学段
为了体现义务教育阶段数学课程的整体性,《全日制义务教育数学课程标准(实验稿)》(以下简称 《标准》)通盘考虑了九年的课程内容;同时,根据儿童发展的生理和心理特征,将九年的学习时间具体划分为三个学段:
第一学段(1~3年级)、第二学段(4~6年级)、第三学段(7~9年级)。

(二) 关于目标
根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述。
《标准》中不仅使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求。

知识技能目标
了解(认识)
能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体 情境中辨认出这一对象。

理解
能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。

掌握
能在理解的基础上,把对象运用到新的情境中。

灵活运用
能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。

过程性目标
经历(感受)
在特定的数学活动中,获得一些初步的经验。

体验(体会)
参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。

探索
主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象 的区别和联系。

(三) 关于学习内容
在各个学段中,《标准》安排了“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个学习领域。课程内容的学习,强调学生的数学活动,发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。
数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情 境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
空间观念主要表现在:能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观来进行思考。
统计观念主要表现在:能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
应用意识主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。
为了体现数学课程的灵活性和选择性,《标准》在内容标准中仅规定了学生在相应学段应该达到的基本水平,教材编者及各地区、学校,特别是教师应根据学生的学习愿望及其发展的可能性,实施因材施教。同时,《标准》并不规定内容的呈现顺序和形式,教材可以有多种编排方式。

(四) 关于实施建议
《标准》针对教学、评价、教材编写、课程资源的利用与开发提出了建议,供有关人员参考,以保证《标准》的顺利实施。
为了解释与说明相应的课程目标或课程实施建议,《标准》还提供了一些案例,供参考。

『肆』 小学数学课程标准内容

2011年版的小学数学课程标准分为四个部分:
第一部分:前言。
一、课程性质内
二、课程基本理念
三、课程设容计思路
第二部分:课程目标
一、总目标
二、学段目标
第三部分:课程内容
第一学段(1~3年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第二学段(4~6年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第三学段(7~9年级)
一、数与代数
二、图形与几何
三、统计与概率
四、综合与实践
第四部分:实施建议

一、教学建议
二、评价建议
三、教材编写建议
四、课程资源开发与利用建议
附录:
附录1:有关行为动词的分类
附录2:课程内容及实施建议中的实例

『伍』 小学数学新课标新在哪

义务教育阶段数学课程内容分为“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”四个方面,每一部分内部的结构和具体内容都做了适当调整。
第一学段具体内容的修改
1.统计与概率等内容适当降低难度
2.增加或进一步明确了一些具体内容
增加的内容包括:“知道用算盘可以表示多位数。”“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。”
调整的内容包括:估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用”,使估算的要求更加具体、明确,有助于学生清楚地认识和理解估算的价值与意义。强调了“选择适当的单位进行简单估算”,明确估算的重点一是要有具体的情境,二是在一个确定的情境中,根据实际需要选择适当的单位进行估算。
第二学段具体内容的修改
1.统计与概率等内容适当降低难度
第二学段的统计与概率内容,删除了众数、中位数内容和“能设计统计活动,检验某些预测;初步体会数据可能产生误导。”
删除“了解两点确定一条直线和两条相交直线确定一个点”。这个内容对于小学生来说较为抽象,与生活经验的联系也不很紧密,要求学生了解意义不大,而把“了解两点确定一条直线”放在第三学段作为进行演绎证明的基本事实之一。
2.增加或调整了部分内容
增加“在具体情境中,了解常见的数量关系:总价=单价 ×数量、路程=速度 ×时间,并能解决简单的实际问题。”了解一些常见的数量关系,特别是运用这些数量关系解决问题,是小学阶段问题解决的核心。而“总价=单价 ×数量、路程=速度×时间”是小学阶段最常用的数量关系,绝大多数实际问题都可以归结为这两类数量关系。修订后的数学课程标准中增加了这一要求,为小学数学课程与教学中的问题解决提供了一个重要基础。
增加“结合简单的实际情境,了解等量关系,并能用字母表示。”了解数量关系是学习字母表示数的重点目的,这一要求让学生在实际情境中了解数量关系,也为学习简易方程做准备。
增加“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的过程中认识圆周率。
第三学段具体内容的修改
1. 第三学段删减的内容
数与代数领域:能对含有较大数字的信息作出合理的解释与推断;了解有效数字的概念;能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题。
图形与几何领域:关于梯形、等腰梯形的相关要求;探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求;等腰梯形的性质和判定定理。
统计与概率领域:会计算极差;会画频数折线图。
2. 第三学段增加的内容
一个是必学内容,一个是选学内容。选修内容的增设主要是从课程的理念出发,为学生个性的发展提供机会和可能。修订后的数学课程标准中提出课程“要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”因此,数学课程在规定了所有学生应该达到的标准的同时,也应该为学有余力、有特殊需求的学生提供更大的发展空间。选学内容的设置,就是为满足这些学生进一步探索、学习需要的,这些内容不要求面向所有学生。
此外,修订后的数学课程标准中还有一些知识内容是在具体要求上做了调整。
在第三学段的“综合与实践”领域,修订后的数学课程标准基本保持了《数学课程标准(实验稿)》的要求,如:“要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系”等等。同时提出更为具体的要求,如:“反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。”这样使“综合与实践”的学习更加具有可操作性。

『陆』 小学数学新课标的主要内容有哪些

课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。

『柒』 小学数学2012新课标与以前课标的区别

基本理念
1、什么叫数学
实验稿:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。P1
修订稿:数学是研究数量关系和空间形式的科学。
2、什么叫数学教育
实验稿:──人人学有价值的数学;
──人人都能获得必需的数学;
──不同的人在数学上得到不同的发展。P1
修订稿:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
良好的数学教育:就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。
3、学习方式
实验稿:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。P2
修订稿:学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。
什么是好的教学?第一条,除了知识传授之外,必须调动学生学习积极性,引发学生的思考;第二条,既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。
4、设计思路
数学主要有三方面的知识:“数量关系”、“几何关系”、“随机关系” 。
数学学习的四方面课程:
实验稿:数与代数、空间与图形、统计与概率、实践和综合运用。P4
修订稿:数与代数、图形与几何、统计与概率、综合与实践。
①数与代数
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足一定的运算律。学习这些内容有助于理解运算律,培养运算能力。
模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果并讨论结果的意义,是求解模型的过程。这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想。
②图形与几何
直观与推理是“图形与几何”学习中的两个重要方面。几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。在解决问题的过程中,合情推理有助于探索解决问题的思路、发现结论;演绎推理用于验证结论的正确性。
③统计与概率
在“统计与概率”中,帮助学生逐渐建立起数据分析的观念是重要的。数据分析包括:了解在现实生活中有许多问题应当先做调查研究、收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。在概率的学习中,所涉及的随机现象都基于简单事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。“统计与概率”的内容与现实生活联系密切,必须结合具体案例组织教学。
④综合与实践
是培养学生过程经验很重要的载体。通过综合与实践,能够把知识系统化,解决一些实际问题。
针对问题情景,学生借助所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程应当贯彻“少而精”的原则,保证每学期至少一次。它可以在课堂上完成,也可以将课内外相结合。
5、目标
双基:基础知识、基本技能。
四基(修订稿):基本知识、基本技能、基本思想、基本活动经验
6、基本思想
核心思想:演绎和归纳
1)演绎:亚里士多德的三段论。他的基本思想有两个,第一个说话要有出发点,有公认的前题,后来演变到公理化体系。第二个,它的推理逻辑是有大前提、小前提。
2)归纳:培根的《新工具论》。在这一类物体中,很多都有了这个结论,那么我们是否可以推想。
归纳中含有类比思想:凡是有性质A、B、C的,都有性质D,我发现了一个新的东西,它有性质A、B、C,那么它是否可以想像它有性质D?
3)两者的关系:归纳思想需要通过演绎来证明是不是对的,但无论如何,归纳思想可以用于发现新的结果。
数形结合
等量代换
7、基本活动经验
帮助学生思考经验积累,问题提出的经验的积累,创新性活动的积累。
8、问题解决
实验稿:分析问题和解决问题。P6
修订稿:发现问题、提出问题、分析问题和解决问题。
能够发现问题,把问题提出来,然后是分析问题的能力。在数学上能够提出来很难,提出来后能够用数学符号把它表达出来,这是比较难的

『捌』 小学数学新课程标准

http://www..com/?word=%D0%A1%D1%A7%CA%FD%D1%A7%D0%C2%BF%CE%B3%CC%B1%EA%D7%BC&tn=360se_4_dg

『玖』 小学数学新课标内容

第一学段(1---3年级)

知识技能

1、经历从日常生活中抽象出数的过程,理解常见的量;了解四则运算的意义,掌握必要的运算技能。了解估算。

2、经历从实际物体中抽象出简单几何体和平面图形的过程,了解一些简单几何体和常见的平面图形;感受平移、旋转、轴对称,认识物体的相对位置。掌握初步的测量、识图和画图的技能。

3、经历数据的收集和整理的过程,了解简单的数据处理方法。

数学思考

1、能够理解身边有关数字的信息,会用数(合适的量纲)描述现实生活中的简单现象。发展数感。

2、再讨论简单物体性质的过程中,发展空间观念。

3、在教师的指导下,能对简单的调查数据归类。

4、会思考问题,能表达自己的想法;在讨论问题过程中,能够初步辨别结论的共同点和不同点。

问题解决

1、能在教师的指导下,从日常生活中发现和提出简单的数学问题。

2、获得分析问题和解决问题的一些基本方法,知道同一问题可以有不同的解决方法。

3、体验与他人合作交流、解决问题的过程。

4、初步学会整理解决问题的过程和结果。

情感态度

1、对身边与数学有关的事务(现象)有好奇心,能够参与数学活动。

2、在他人帮助下,体验克服数学活动中的困难的过程。

3、了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。

4、在解决问题的过程中,养成询问“为什么”的习惯。

第二学段(4----6年级)

知识技能

1、体验从具体情境中抽象出数的过程;理解分数、百分数的意义,了解负数,掌握必要的运算技能;理解估算的意义;掌握用方程表示简单的数量关系、解简单方程的方法。

2、探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征;体验图形的简单运动,了解确定物体位置的方法,掌握测量、识图和画图的基本方法。

3、经历数据的收集、整理和分析的过程,掌握一些简单的数据处理技能;体验事件发生的等可能性,掌握简单的计算等可能性的方法。

数学思考

1、能够对生活中的数字信息作出合理的解释,会用数(合适的量纲)、字母和图表描述生活中的简单问题;初步形成数感,发展符号意识。

2、在探索简单图形的性质、运动现象的过程中,初步形成空间观念。

3、能根据解决问题的需要,收集与表示数据,归纳出有用的信息。

4、能进行有条理的思考,能清楚地表达思考的过程与结果;在与他人交流过程中,能够进行简单的辩论。

问题解决

1、能从社会生活中发现并提出简单的数学问题。

2、能探索分析问题、解决问题的有效方法,了解解决问题方法的多样性。

3、能借助于数字计算器解决简单的计算问题。

4、初步学会与他人合作解决问题,尝试解释自己的思考过程。

5、能初步判断结果的合理性,经历回顾与分析解决问题过程的活动。

情感态度

1、愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。

2、在他人的鼓励和引导下,尝试克服数学活动中遇到的困难,相信自己能够学好数学。

3、在运用数学解决问题的过程中,体验数学的价值。

4、初步养成乐于思考、实事求是、勇于质疑等良好品质。

阅读全文

与2013小学数学新课标相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99