⑴ 如何有效衔接中小学数学
1)立足于新课标和教材,尊重学生实际,实行分层次教学。
在教学中,应从学生实际出发,采用“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,适度加快教学节奏,以适应初中数学的快节奏教学;在知识导入上,多由实例和已知引入;在知识落实上,先落实“死”课本,后变通延伸用活课本;在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。
(2)重视新旧知识的联系与区别,建立知识网络。
中小学数学有很多衔接知识点,如有理数、三角形等,到初中,它们有的加深了,有的研究范围扩大了,有些在小学成立的结论到初中可能不成立。因此,在讲授新知识时,我们小学教师不要把内容讲得太死,可以适度说明这些内容到初中学习时是有所变化的。
(3) 重视培养学生自我反思自我总结的良好习惯,提高学习的自觉性。
小学数学的概括性不如初中数学强,题目灵活多变,只靠课上听懂是不够的。所以我在教学中要求学生认真总结归纳,要求学生应具备善于自我反思和自我总结的能力。在单元结束时,帮助学生进行自我章节小结;在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,特别是用方程来解。由此培养学生善于进行自我反思和自我总结的习惯,扩大知识和方法的应用范围,提高学习效率。
⑵ 中小学数学教学衔接问题国内外研究现状
不重要 我认为:初一和六年级是需要衔接的。
初二很重要成绩好的就越来越好,成绩坏的就越来越坏。
初三面临着中考,也很重要。
但基础是在初二完成的,初二最重要,关键看学习态度。
⑶ 怎样做好中小学数学教学的衔接工作
中小学数学教学衔接问题及对策
转自:松柏中心学校课题组
我们时常听到有的学生家长说:“我的孩子在小学数学考试成绩大多都在八十分以上,很少有不及格的情况。怎么升初中后数学成绩下滑这么快?”,我们调查了几届六年级学生升入初一后的数学成绩发现的确存在这一现象。走访其他学校,发现也存在同样的问题。
目前随着新课标的深入落实,中小学数学教学所存在的脱节现象日益严重,一部分学生进入初中后,由于新知识的增加引发了许多的变化,视野的扩展、思维方式的改变致使一部分刚步入初中门槛的学生一时难以适应,导致成绩一时明显下降。按照思维发展规律,思维方式的转变需要一个过程,如何缩短这个过程?如何搞好中小学数学教学衔接,使中小学的数学教学具有连续性和统一性,使学生的数学知识和能力都衔接自如,是摆在我们教师面前的一个重要任务。本文就衔接问题及对策提出粗浅的的看法,供同行们商榷。
一、当前中小学数学教学衔接存在的问题
1.从小学到中学数学知识从横向、纵向两方面扩展
(1)数的范围发生了变化
从小学进入中学,学生遇到一些新的问题。比如,测量温度,当气温在零度以上时,学生能用小学所学的数表示其温度的高低,但当气温在零度以下时,就难以用小学所学的数表示了。再比如,测量一座山的海拔高度(以海平面为零界面),用小学所学的数也就可以表示了,但测量海平面以下海水的深度时,又如何表示呢?为解决这类实际问题,引入了“负数”的概念。这样初中所学的数,就由小学所学的正整数、正分数和零扩大到包含正数、负数和零的有理数范围。随即又出现了一类新的数,如:已知正方形的面积为2,它的边长是多少?于是又引入了无理数的概念。数的范围又扩大到包括有理数和无理数在内的实数的范围。
(2)数的形式发生了变化
在小学范围内,解决实际问题,是可视为实物个数的数通过运算得出结论。升入中学,数的范围扩大到有理数和实数之后,与小学相比难度大大增加,其形式上也发生了变化。一个点、一条线段的长度、一个数值都可用一个有理数或无理数表示出来了。但是另一类数又如何简单地表示呢?比如:用n表示整数,2n就表示偶数,2n+l就表示奇数,这样就解决了所有奇偶数的表达问题。一个简单的代数式就表示了无数个现实的数,变量之间的函数关系等,使学生由常量数学走入变量数学学习,这样的变化给学生提供了更广阔的思维空间。
( 3)解决问题的方法发生了变化
在未引入代数知识之前,解决实际问题大多用的是算术方法,即由若干已知数值,采用的直接推出的办法得出结果。而引入代数概念后,给解决实际问题提供了更加简捷的途径。把问题中给出的己知量和问题所求的结果——未知量,均视作已知,按照数学逻辑,建立等量关系,然后通过运算求出未知数。这种方法就是方程的思想方法。
所以小学解决数学问题使用的是直推法,由己知数间的关系直接推出结论。中学解决数学问题,使用的是假设法,即先假设所求的未知数为己知数,把它和其它已知数按照题中所给出的关系组成等式,然后再通过求解得出结论。
(4)几何拓展,不断提升
新课标对几何内容的安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质展现出来。在几何内容上从小学到中学的变化,实际上是从“实验几何”过渡到“推理论证几何”。推理几何仍是传统难关。
2、教学方法法衔接问题
目前,“衔接”上最大的问题是教学方法的严重脱节。小学教学进度慢、坡度缓;而中学教学进度快、坡度大。小学直观教学多,练习形式多;而中学直观教学少,练习形式少,教师辅导也少。小学重感性知识,口头回答问题多;而中学重理性知识,书面回答多。小学强调直观演示、偏重形象思维;而中学强调推理论证,偏重抽象思维。所以学生刚进中学感到不适应。
3、学习方法衔接问题
小学阶段科目少,内容浅,而中学课程增多,内容拓宽,知识深化,尤其是数学由具体发展到抽象,由静态发展到动态,学生认识结构发生了根本变化,加之一部分学生还未脱离教师的“哺乳期”,没有自觉学习的能力,致使有些学生因不会学习或学不得法而成绩下降,久而久之失去学习数学的信心和兴趣,开始陷入厌学的困境。
4、学习兴趣的衔接问题
学习兴趣是对学生学习活动或学习对象的一种力求趋近或认识的倾向。如对数学有兴趣,则能唤起学生的求知欲,能推动学生去克服学习上的困难。“灌”和“压”的办法,使不少的小学教师把数学课堂教学教得枯燥无味,使不少学生听到数学就头痛,对数学学习“望而生畏”。在教师的严加管束下,学生虽然没有兴趣,但也只得被动地勉强应付。可到了中学,强调自觉学习,教师稍一放松督促辅导,成绩下降,学生就对数学敬而远之。学生对数学缺乏兴趣,会引起动机与效果间的恶性循环。
5、作业格式衔接问题
目前,中小学数学作业在书写格式上有许多地方不统一,小学生长期形成的作业习惯,升入中学后,一下子很难转变过来,也造成了学习上的困难。例如:计算结果是假分数的,在小学一定要化成带分数,而在中学就不一定要化成带分数。又如:在中学不强调区分所谓被乘数和乘数,而在小学被乘数和乘数有严格的规定。又如:在中学解题时先要写“解”,而小学又不要求写。
二、中小学数学教学衔接的对策
要搞好中小学数学教学的衔接,使中小学的数学教学具有连续性和统一性,使学生的数学知识和能力都衔接自如,须要中小学数学教师的共同努力,要从小学角度考虑与中学的衔接,也要从中学角度考虑与小学的衔接。
1、教学内容的衔接
第一个衔接点:由“算术数”发展到“有理数”。
小学数学里的数都属“算术数”,从“算术数”发展到“有理数”是数学的一次飞跃,是初一学生遇到的第一个难点。小学里应该为这次飞跃作好孕伏,打好基础。
1.在揭示整数的概念时,要给数的发展留下余地,不能说“整数就是自然数”。而应该说“自然数属于整数”。还可以用如下的集合图表示整数的范围,以示整数除自然数外还有其它的数。
2.早期渗透相反意义的量的认识。小学虽不讲负数,但表示相反意思的量的名词述语是比较多的。如“收人和支出”、“增加和减少”、“上升和下降”等。在数学教学中要有意识地为负数出现作好铺垫,并可出现符号。
3.重视利用数轴上的点表示数。中学生数学里一开始就是利用数轴学习有理数的。因此,在小学里要重视利用数轴上的点表示数。在20以内加减法教学中就可孕伏了数轴的知识。在中高年级还应要重视利用数轴上的点表示小数、分数并作加减计算。
第二个衔接点:由“数”到“式”的过度。从具体的量过度到抽象的数这是数学的一次飞跃,从确定的数过度到用字母表示数,引进代数式又是一次飞跃。从“数”过度到“式”的桥梁则是“字母表示数”。“简易方程”单元前安排了“用字母表示数”。这部分内容学生必须认真学好,使学生清楚地知道用字母表示数是实际的需要,这样表示的数和数量既简单明了,又具有含义的普遍性和应用的广泛性。以后,在计算应用题、几何初步知识的教学中,要有意识地充分运用“用字母表示数”的工具。
1.用字母表示运算定律法则。如:乘法分配律等。
2.用字母表示公式和常见的数量关系。如:三角形面积公式等。
3.用字母表示应用题中数量关系。如:果园里种桃m棵,种梨树8棵,种梨树的棵树是桃树的几倍?
第三个衔接点:由列算术式解应用题到列方程解应用题的过渡。
由列算术式解应用题到列方程解应用题,这是思维方法上的一个大转折。列算术式解应用题的思维特点是:把所求的量方放在特殊的地位,通过已知量求得未知量。列方程解应用题的思维特点是:把应用题的“已知”和“未知”根据它们的等量关系列出方程,然后通过解方程使未知向已知转化,从而求得问题的解答。因此,关键是找出数量关系中的等量关系。“简易方程”一章,重点放在掌握列方程解应用题的思维方法上。先引导学生用两种方法来解,然后再进行对照,使学生认清这两种解法的特点。以后在解应用题时,尽可能用代数式方法解,逐步克服算术解法定势。
第四个衔接点:从“实验几何”到“论证几何”的过渡。
小学数学里学习的几何初步知识,是通过让学生量一量、画一画、拼一拼、折一折得到一些几何概念,基础是属于实验几何的范畴,往往侧重于计算,缺少逻辑论证。学习中学平面几何的关键在于需要逻辑推理论证的能力。而在小学,这方面恰恰是薄弱点。从“实验几何”发展到“论证几何”过渡的桥梁则是逻辑推理论证能力。在小学数学教学中,可以如下几方面做好衔接工作。
1.充分发掘小学数学教材里潜在逻辑推理因素。
2.在应用题教学中,逐步培养学生说出分析推理过程,并学会语言和数学符号表达数量之间的关系。
3.在几何初步知识教学中,适当安排具有推理论证因素的练习题。
中学数学教学中教师应把握好主题内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例自然而然地引出代数式的概念。使学生感到升入初一就象小学升级那样自然,从而减小对初中内容望而生畏的恐惧感。
对于正负数这一概念的引入.可先将小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是因为原有的数集与解决实际问题之间的矛盾而引发新数集的扩展。这样既水到渠成地引入了有理数集合,又为再一次扩充作好了准备。引入负数概念时可举学生熟悉的例子,通过学生熟悉的问题可激发学生强烈的求知欲.学生就会去积极主动地思考。
现在初一学生年龄大都在11至l2岁,这个年龄段学生的思维正由形象思维向抽象思维过渡。思维的不稳定性以及分析综合能力尚未形成,决定了列方程解应用题的学习将是初一学生学习数学面临的一个难度非常大的坎。因为学生解题时只习惯于套用小学的老师总结好的公式,属定势思维,不善于分析,不善于转化和作进一步的深入思考,思路狭窄、呆滞,题目稍有变化就束手无策。因此,教学中要重视知识的发展过程。因为数学学习本身就是一种思维活动,教学中要尽可能让学生去思考。有些问题同时可用算术方法和代数方法,然后比较两种方法的优劣,使学生清晰地理解代数方法的每一步的感受它直接易懂的优越性.从而培养学生用列方程的方法解决问题的能力。
2、教学方法的衔接
教学方法的衔接,首先是教师必须结合学生的生理和心理特点,从学生的认知结构和认知规律出发,有效地改进教法,搞好教学方法上的衔接。因此,教师在教学中,要紧紧联系学生的生活实际,深入浅出的讲解,适当增加课堂练习的次数,严格统一书写格式。对每节课的教学难点,必须做到心中有数,采取有效方法,或放慢进度,或分散难点,或化难为易,或铺路搭桥,因势利导,充分揭示新旧知识的内在联系。要活跃学生的思维,有赖于教师在教法上的新型多变,正确、合理、巧妙地启发引导学生积极思维,使学生能正确地顺利地解决一个个习题和对概念的进一步理解。
其次在于培养学生的自学能力,从小学起就要抓紧学生自学能力的培养。
3、学习方法的衔接
教师重视数学学习方法的指导是非常必要的,因为学生是学习的主体,学习方法的正确与否,是做好中小学数学衔接的关键。
(1)预习方法的指导
小学阶段一般不要求学生预习,到了初一学生大多不会预习,也不知道预习起什么作用.既使预习也仅仅只是流于形式,草草看一遍,看不出问题和疑点。因此,教师要注重预习指导,加强预习训练。在指导预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本章知识的概况。二细读,对重要概念、公式,法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着问题去听课。只要学生认真预习,听课时常常就会有豁然开朗的感觉,这样就会逐步尝到自觉学习的甜头。从而激发学生预习的兴趣。预习前教师可先布置预习提纲,使学生有的放矢。实践证明,养成良好的学习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
(2)听课方法的指导
在听课方法的指导方面要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,应指导学生在听的过程中注意:①听好每节课的学习要求;②听好知识引入及知识形成过程;③听懂重点、难点剖析(尤其是预习中的疑点);④听懂例题解法的思路及数学思想方法的体现;⑤听好课后小结。教师讲课要重点突出,层次分明,要注意防止“填鸭式”、“满堂灌”,一定要掌握最佳讲授时机,使学生听之有效。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:①多思、勤思,边听边思考;②深思,即追根溯源地思考,善于大胆提出问题;③善思,由听到的和观察到的去联想、猜想、归纳:④树立批判意识.学会反思。可以说“听”是“思”的基础关键。“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师在黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:①记笔记服从昕讲,要掌握记录时机;②记要点、记疑问、记解题思路和方法:③记小结、记课后思考题。使学生明白“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
(3)课后复习巩固及完成作业方法的指导
初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习,以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,回顾课堂讲授的知识、方法,结合笔记记录的重点、难点。同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生:①如何将文字语言转化为符号语言;②如何将推理思考过程用文字书写表达;③正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、跟练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。
(4)小结或总结方法的指导
在进行平时的课堂小结、单元小结或复习总结时,初一学生容易依赖老师,习惯教师带着去复习总结。我们认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题目的类型及解题方法。
应该说学会总结是数学学习的最高层次。学生总结与教师总结应该结合,教师总结更应达到藉炼、提高的目的,使学生水平向更高层次发展。
4、学习兴趣的衔接
激发学生的学习兴趣,精心保护和培养学生发自内心的学习愿望和由此萌发出的学习上的自尊心和自信心是教与学的统一性的起点,没有兴趣,没有求知欲,何谈提高教育质量。激发兴趣首先应抓住课堂教学的引导这个环节,运用恰当的教学活动,激发学生的学习兴趣,启发学生参与教学活动的积极性。其次,因大部学生对同一目标的兴趣的稳定性、持续性都较差,所以,在教学中要注意参与状态,防止学生兴趣减退,保证学生参与的持续性,提高参与质量。随着参与兴趣的产生,参与积极性的提高,个别学生会出现与众不同的参与行为和独特的参与方式,影响到课堂秩序,教师应该以适当的方法巧妙纠正,做到既要引导全体进入角色,又不至于伤害其参与的兴趣。因此,在教学过程中,充分利用生动的事例,生活中的数学问题等来培养学生的学习兴趣,激发学生的学习热情,运用和蔼亲切的笑容,幽默诙谐的语言,营造浓郁的学习氛围,调动学生的学习积极性。
所以,在小学,教师要是以鼓励、诱导、启发等教学方法,使学生树立学习的信心,进而培养他们的学习数学的兴趣。中学教师也要继续注意激发学生的学习兴趣问题。这是一项极其重要的衔接工作。
5、作业书写格式的衔接
中学数学的表达式也可以先渗透到小学高年级。如:运算律用字母表示,图形的面积、体积、周长计算公式用字母表示,几何图形用字母注明,计量单位用字母表示等。这样做对小学高年级学生并不困难,并且有利学生用符号进行思考,促进抽象思维的发展。
六年级升入初一后,教师要对作业格式做统一要求,严格按照要求的格式认真书写。在测验时,可以对书写格式赋予一定的分值,而平时要多次强调,这样经过一段时间的训练,学生们会很规范的书写了。
6、中小学教师间的有效联系推进中小学数学衔接
打破中小学校与校之间的界限,给中小学数学教师多提供一些时间和空间,让他们有机会多交流,多探讨,加深相互学段的学生的了解。随着信息技术的发展,我们老师可以借助网络平台加大交流力度与深度。同时教育主管部门可以牵头带领相关教师多进行互动式教学,多安排一些集体教研的时间。作为老师,尤其是初一的老师更应当主动求教,为学生顺利实现中小学数学衔接提供帮助。
总之,解决好中小学数学教学衔接,既要注意中小学教材的衔接,又要注意学生从小学到中学在学习方法和学习习惯上的过渡;既要弥补旧知识的缺漏,又要认真巩固新知识;既要面向大多数,考虑大部分学生的知识基础和接受能力,又要注意因材施教。既要从小学角度做好衔接工作,也要从中学角度做好衔接工作。
⑷ 如何衔接中小学数学教学
从小学升入初中,学生跨进了一个新的学习阶段.但实践中发现,有相当一部分学生进入初中后,对数学学习感到不适应,甚至有一些小学数学成绩优异的学生进入初中后学习成绩急剧下降,造成学生、家长的苦恼.在这个转折关头, 如何做到小学到中学数学学习的自如衔接, 保证中小学数学教学具有连续性和统一性, 是摆在我们数学教育工作者面前的一个重要任务.下面就自己的认识谈一些体会.
一. 产生衔接不当的主要原因
影响中小学数学教学衔接的因素很多,既有学生的问题,也有我们中小学教师教法的问题,主要表现在以下几个方面:
1.教学内容方面.小学的数学知识少、内容浅、难度低、知识面窄.教材的坡度缓,直观性强,易于模仿掌握.而初中数学内容多,知识面宽,比较抽象,也触及到抽象的数学语言、逻辑运算语言以及逻辑推理、较复杂的空间立体图形等,教材还突出培养利用数学知识解决实际问题能力.这些对于初一新生来说,一下子转过弯来,理解并掌握教材,决非易事.例如:小学数学中数的部分只涉及了自然数和分数的有关知识,而学生在升入初中后,在代数方面遇到的第一个困难就是增加了“负数”,有理数的计算有了符号的变化,对学生注意力的分配要求明显变高了.接踵而至的绝对值、相反数、数轴等知识有了一些抽象思维的要求,部分学生更是丢三拉四,无从下手.进入八年级又引入了无理数、实数概念,与其相关的综合题也越来越复杂.
2.教师的教学方法方面.小学数学周课时多,每课时安排的内容少,难度小.老师对难点、重点可以有充裕的时间反复讲解,学生可以反复的练习,从而各个击破,效果极佳.甚至有的小学生老师对学生是一步一步“护着走,甚至抱着走,嚼着喂”,以至于学生对老师有很大的依赖性,对知识的灵活运用能力差.而初中的数学周课时少,每课时安排的内容多,且运用灵活,难度大,教学进度快,无法反复讲练.教师只是通过设问、设导、设陷、设变进行启发引导,开拓思路,然后由学生去思考,去解答,并逐渐学会举一反三.在教学过程中要求学生对知识理解要透彻,应用要灵活,注重对知识运用的归纳和总结,促进语言能力的发展,弄清知识间的内在联系,并不断构建和完善知识体系.换句话说,初中生由老师引路,学生自己走路.
3. 学生的思维方式方面.在小学阶段,学生的思维主要是依赖机械记忆,很多知识是通过背诵来获取的.初中学生的思维偏向于形象思维(当然仍有一些机械性的记忆).目前的小学教材叙述方法比较简单、直观,语言通俗、易懂,很多知识是通过图片、表格来给出的,趣味性强,结论也容易记忆.而初中教材的叙述比较严谨、规范,有些知识往往通过类比、归纳给出,需要一定的抽象思维和想象能力,抓住了事物的本质,才能深入探究.这些对七年级新生而言,有一种措手不及的感觉.
4. 中、小学老师交流与沟通方面.中小学教学相对封闭,各成体系,中小学教师之间缺乏面对面的交流.期刊文章分类查询,尽在期刊图书馆中学教师不了解小学教师的具体教学目标,很少有中学教师主动去了解小学数学的知识体系,更不了解小学教师的教学方法,甚至有不少初中数学老师对小学数学应用题经常是“望数兴叹”,他们只会列方程解,而不会用算术法分析解答,常常埋怨:“现在的小学怎么会这样?知识点教得那么死板,到了初中扭都扭不过来.”小学教师也不会主动去了解初中数学的知识体系和能力要求,教学过程中也很少去想我目前教什么,学生以后会学什么,也很少去想怎样把现在和以后的知识紧密联系起来,总认为:我们辛辛苦苦地工作,无微不至地关爱学生,对学生的提问有问必答,我们都是他们心目中的知心人,初中教师怎能用学校教学中出现的个别现象来否定我们的小学教学.试想在这种状况下,“衔接”的问题又从何谈起?
二.加强衔接教育的策略
在当今中小学数学教学中,教学脱节问题已经凸显,从关心学生持续性发展的角度出发,作为数学教育阵地上的一线教育工作者,我们有责任也有义务明确育人目标,改变教学观念,多角度、多层面促进教学内容、教学方法以及学习方法的衔接,培养学生全面的数学能力,为学生的长远发展夯实基础.
1. 教学内容的衔接.小学数学与初中数学是密不可分的整体,有很多衔接知识点.现在的数学体系分成了四大领域,即数与代数、空间与图形、统计与概率、实践与综合应用,这些内容从一年级一直贯穿到九年级,涉及到整个义务教育阶段,但相同领域的教学内容在不同学段有着不同的目标.初中各章节内容是从初中的客观需求出发,不是小学知识的简单重复与衔接.因此,作为一名中学数学教师,教学中应当把小学与初中数学内容作一个系统的分析和研究,掌握新旧知识的衔接点,搞好新旧知识的架桥铺路工作,向学生传授新知识的同时,有意引导学生联系、复习和更新旧知识,特别注重对那些易出错、易混淆的知识加以分析和比较,有的放矢,帮助学生建立中小学数学知识网络.
2. 教学方法的衔接.初中数学较小学数学而言,内容拓宽,知识深化,从具体发展到抽象,从文字发展到符号,由静态发展到动态,增加了许多难以理解和掌握的知识点,对刚刚升入中学的学生而言,有些内容如绝对值、相反数等确实存在一定难度.因此,在数学教学过程中,教师必须结合学生的心理特征,从学生的认知结构和认知规律出发,采用“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实,在学生已有的生活经验和数学知识的基础上进行教学,让学生保持住学习数学的兴趣,以做好教学方法上的衔接.
3.学习方法的衔接.小学数学教师在教学中结合小学生的年龄特点和认知习惯,往往重说数,轻探究.初中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳.这就要求教师在教学过程中特别需要“授人以鱼,不如授之以渔”,培养学生建立良好的学习方法体系,指导学生形成良好的预习习惯和方法,帮助学生养成专心听讲,勤于思考的听课方法,培养学生形成课后巩固、温故知新的良好习惯,鼓励学生在学习过程中多思、勤思、深思、善思和反思,并将这些好的学习方法渗透到自己“凝神、动笔、思索、质疑”的每一个环节中.
4. 明确育人目标,改变教学观念.义务教育阶段从一年级到九年级做为一个整体,必须有一个统一的、全盘考虑的育人目标,中小学老师都应当清楚,我们的教学是在为学生的终身学习和发展奠基.因而,小学老师要克服短期行为,本着对学生终身负责的态度,树立可持续发展的教育观,重视学生非智力因素的开发,引导学生掌握良好的学习方法,要常看看课标中初中数学的知识体系与标准要求.初中老师也应了解小学数学知识的体系,从小学生原有的思维方法出发,进行知识体系的重新建构,不埋怨,不推卸责任,结合学生的差异,寻找一种既有利于分类推进,又不伤害基础教差的学生自尊心的教学方法,必要时可采用分层教学,给学生一个适当的“缓冲期”让学生逐步适应中学的教学要求.必要时中小学教师相互观摩、相互学习.特别是小学高年级与初中低年级的老师更应该自觉、主动地彼此沟通、相互学习,一起研究学生的数学学习衔接问题,制定出一套适合中小学数学衔接的方法措施.
总之,小学数学与初中数学的衔接问题是一个系统工程,需要中小学教师共同努力.只有这样,方能帮助学生平稳度过中小学的衔接期,顺利完成九年义务教育阶段的学习任务,使紧张、难忘的中小学学习阶段成为学生培养人格、塑造人生的重要阶段.
⑸ 如何抓好中小学数学教学的衔接工作
初一新生从小学升入中学,面临新的学习环境,新的学习任务,新的任课教师,对中学生活充满着信心和希望,但是,中小学数学不仅有连续性而且有阶段性,数学教学的要求和方法都有较大的区别,前后不能自然的衔接起来,因此,初一年级的师生就有一个怎样从小学数学教学过渡到中学数学教学的适应过程.在这一时期里,教师如能从学生和教材的实际出发,充分注意到学生的年龄特征,生理心理特点,照顾到学生的思想,学习基础,在教学内容和方法,学习方法和习惯等方面,因势利导,承前启后做好转化工作,就可以有效地缩短这个适应期,从而及早进入中学数学教学的正常阶段,为提高中学数学教学质量赢得时间,打好基础.反之,若任其自然或采取一些违反教学规律的做法,就会使得学生长期不适应中学数学的学习,以致使部分学生进了中学却进不了“中学数学之门”,出现早期的“分化”现象,无法保证中学数学教学任务的完成,怎样抓好中小学衔接呢?一、根据学生的年龄特征做好中小学衔接工作初一学生正处于从儿童期向少年期过渡的阶段,是体力,智力不断发展的时期,他们的注意占优势,且注意力不集中,即使集中了,也不易持久,行为中情感色彩浓,对有好......(本文共计1页) [继续阅读本文]
⑹ 中小学数学教学的衔接从哪几个方面来分析
在“数与代数”、“空间与图形”、“统计与概率”领域中,您发现中小学知识的衔接点分别是什么?
答:(1)“数与代数”是中小学数学的基本内容,在小学主要学习自然数、正小数(正分数)等数,结合具体情境,体会四则运算的意义,小学中“数的运算”非常重要,以致于占据了现行小学数学教学的绝大部分内容,在小学学习的运算律为初中数学的学习打下一个很好的基础。中学,除了数概念扩充到了有理数、实数外,更重要的是有了式的运算,在学习有理数、实数的运算时与小学的运算律是一致的,从而看出这部分内容的重要性。另外从小学学习用字母表示数开始,到中学进一步研究数字与字母的运算,在此基础上研究代数式的运算及关系,由此而形成的方程、不等式、函数等,就构成了初中数学中“数与代数”的基本部分。最终使得从小学数学的特殊的、具体的数到中学的一般的、抽象的代数式,这是数学思维上的一次飞跃。
(2)“空间与图形”是与人类的生存和居住密切相关,是培养学生初步创新精神和实践能力的一个重要学习内容。它较之其的数学内容更加直观、形象,更易于从现实情境中抽象出数学的概念、理论和方法。在小学阶段,空间与图形领域主要包括图形的认识、测量、图形与变换、图形与位置的初步知识,认识的主要手段是通过直观感知.学习主侧重于长度、面积和体积的计算,较少涉及三维空间的内容,由于教学内容呈现方式比较单一,也使学生的空间观念、空间想象力难以得到真正有效的发展。而初中在此基础上,增加了图形与坐标、图形与证明等内容。主要是运用演绎推理的方法、依据扩大的公理化体系证明平面图形的性质。通过对基本图形的基本性质必要的论证,使学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想,从而使得学生由直观感知逐步过渡到逻辑论证,要让学生逐步理解说理是必要的,逐步学会怎么说理。
(3)由于“统计与概率”的内容从小学到初,都有涉及,遵循新课程和教学改革的要求,由浅入深、由感性到理性,要求学生逐步掌握统计与概率的相关内容并能应用他们解决一些实际问题。因此在教学方面,在小学阶段学生能对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题,初步感受事件发生的不确定性和可能性。并能够根据数据分析的结果作出简单的判断与预测;到了中学,学生要在小学体验和初步理解统计与概率的基础上,主动地投入到数据统计的全过程,并在此过程中,使用统计与概率的特有语言进行交流,进行简单推理,使学生了解统计的思想,掌握一些常用的数据处理方法,并作出恰当的选择和判断的能力,能够用统计的初步知识解决一些简单的实际问题。
⑺ 如何做好小学,初中数学知识的衔接和过渡
初中与小学数学学习过渡问题的研究
一、初中与小学数学学习过渡期分析。
从小学到初中有一个过渡、适应、衔接问题。初一学生面临着许多变化:心理生理的变化,数学知识的变化,学习方式的变化,学习过程的变化,思维方式的变化。
我们经常会看到这样的现象:不少学生小学数学学得较好,一上初中就不行了。出现这种反差是因为初中与小学数学学习过渡衔接出了问题,原因是多方面的,比如,学习方式单一,学习过程简单,逻辑思维能力欠缺等,具体表现在:仅仅接受知识而不主动学习;大量做题而不归纳总结;对问题不求甚解,只知其然而不知其所以然;不喜欢思考问题或惧怕探究问题等,以致这些学生从数学优秀生沦为学困生。
基于以上原因,我们确立研究课题《初中与小学数学学习过渡问题的研究》。
二、通过前期问卷调查,找到学生存在的问题。
在课题方案形成后,我们设计了课题调查问卷,抽取我校初2013届8个班学生为研究对象,调查了解学生的学习方式、学习过程、学习习惯与思维方式的状况。从调查统计结来看,存在着不少问题。比如:
(1)平时在学习新课之前能做到经常预习的人占31.6%,这说明初一新生普遍没有养成预习的习惯。
(2)非常愿意参加课堂讨论交流的人占39.6%。这说明多数学生还还没有合作学习的意识。
(3)对于学习过程中重要的知识点、典型方法、自己的心得体会能及时总结的人占34.9%。这说明多数学生还没有及时总结的习惯。
(4)解决数学问题时,不同的方法多的人数只有14.5% ;“解决数学问题时思维灵活”的人只有29.6%,这说明学生思维的发散性和灵活性普遍较弱。
三、针对调查问卷反映出的问题,我们制定了相应的方法与措施。
(1)理论联系实际,将教育理念贯穿于日常的教学活动过程中。
(2)使课堂教学成为学生顺利过渡的主阵地,将自主学习、合作学习、探究学习方式贯穿于课堂教学中,通过设置问题情境,引导学生学会思考,提高学生的探究能力,培养学生经验型逻辑思维能力,提高学生思维的发散性和灵活性。
(3)有效地利用课余时间成为学生转变学习方式的重要补充。在新课之后,我们往往设置1-2道思考题,这些问题源于课本内容,但又高于课本内容,具有一定的探究价值。鼓励学生积极思考,合作探究,寻找解决问题的方法,发展思维能力。
(4)关注学生的非智力因素,着重培养学生严谨的治学态度,勤奋踏实的学风,知难而上的勇气,坚忍不拔的毅力,勇于探究、敢于创新的精神等良好的个性品质。
(5)在实践中,不断反思和改进方法与策略,已达到预期的研究目标。
四、针对课题实施过程中学生出现的典型问题及时采取了对策。
问题:①许多学生不重视预习,认为预习可有可无;②学生整理错题集存在应付走过场的现象;③不能坚持及时复习;④习惯于自主学习,不习惯合作学习,⑤不愿把自己不懂的问题告诉他人;⑥缺乏知难而上的勇气,遇到不会的问题,往往借助别人或采取回避的态度。
对策:①加强预习的指导和检查,促使学生重视预习,学会预习;②定期检查错题集,对于出现的问题及时纠正。③通过有意识的设计错题集中出现的易错题进行课堂小测试,引导学生重视整理错题集,夯实双基,提高能力;④进一步引导学生及时复习,做到当天一复习,一周一复习,一月一复习;⑤鼓励学生多提问题,多讨论问题,不轻易放过一个小问题;⑥通过学习优秀生,培养学生良好的个性品质;⑦遇到暂时不会的难题,决不放弃,先独立思考,若实在解决不了,再去问别人,直到解决问题为止。
五、课题实施后的成果
(一)学生的学习方式实现了可喜的转变
自主学习、合作学习、探究学习方式已成为学生主要的学习方式。
在课堂教学中精心设置由易到难的问题串,给学生适当预留思考时间,鼓励学生积极思考,独立寻找解决问题的方法。从而引导学生自主学习、探究学习。在学生经过独立思考,找到解决问题方法的基础上,给学生充分交流自己方法的时间和机会,促进学生合作学习。
案例:《打折销售的学问》
这节课课内共提出了八个问题,分为导入、探究、提升三个阶段,让学生了解打折销售的方式,理解打折销售中蕴含的数学方法,运用方程思想来解决打折销售问题。学生经过启发诱导、自主发现、研究讨论、归纳总结,经历了“观察→类比→猜想→推理→应用”的探索过程,完成了“发现问题→探究知识→建构知识→解决问题”数学活动,使思维集中于问题的最近发展区,从而加快其形成完整的认知结构,提高应用知识解决问题的能力和思维能力。
这节课课后提出思考题:“个体服装销售通常高出进价的20%便可盈利,但个体商贩常以高出进价的50%——100%标价。假如你准备买那件标价为150元的服装,进价在什么范围,你应该在什么范围内还价?”提出问题后,我
⑻ 如何搞好中小学数学教学的衔接
在前几节数学课上,一定告诉学生我们学数学同小学一样,不用怕,就是数域扩大了,以后我们学数学,总是在不断扩大数域。千万别让学生感到小学和初中没有联系。
例如:大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?
请你举出生活中:1、“用自然数或分数表示的量”2、你知道的实际意义的最大和最小数?3、谁能说说1纳米和1光年?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
4.87、……
为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示的数,你见过吗?能举例吗?请你想一想在什么情况下可以用负数呢?
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充.
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
⑼ 小学中学数学衔接问题的课题研究
1、小学要开始有目的想学生介绍初中学习方法
2、初一时要向学生介绍学习方法/
3、突破以下几点尤为关键:(1)自然数向实数转化;(2)数向式的转化;(3)利用教具和实物建立丰富的立体感。