导航:首页 > 中小学校 > 中小学数学解决问题

中小学数学解决问题

发布时间:2020-12-21 06:55:42

1. 小学数学新课程标准 中解决问题包括哪些内容

1.数学课程应致力于实现义务教育阶段的培养目标,人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。它不仅包括数学的结论。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。

3.教学活动是师生积极参与、教师是数学学习的组织者、引导者与合作者。

2. 小学数学解决问题的四个步骤

解决问题三步骤的实施

(一)阅读与理解

1.找信息

找信息是解决问题的第一步。在低年级多是以图画、表格、对话等方式呈现问题。随着年级升高,逐渐增加纯文字问题的量。在实际教学中,对于中低年级而言,最有效的途径是知道学生学会看图,从图中收集必要的信息。教师要注意三种情况,一是题中的信息比较分散,应指导学生多次看图,将能知道的信息尽量找到;二是题中信息比较隐蔽时,容易忽略,这是要引导学生仔细看图,三是信息的数量较多,要引导学生根据问题收集有关信息。

2.提问题

提出问题比解决问题更重要。只有认识到信息之间的联系,才能提出一个合理的数学问题。教师有意识给学生提供机会,为学生营造大胆提出问题的气氛 ,引导学生学会提出问题,鼓励学生提出问题。

3.示意图

示意图让文字有了图形的辅助,有助于体现教师教学的直观性,同时能够帮助学生更好地理解和接受所学的知识。指导学生示意图,能从根本上培养和增强学生解题能力和自主学习的能力。授人以鱼不如授人以渔,学会解题方法才能从根本上学会如何做题,学会画示意图才能使学生在今后的学习中,能进行自主学习探究,找出解决问题的方法。

(二)分析与解答

1.数量关系

心理学先入为主原则,第一次学习建立起来的“模型”表象,不仅会给学生留下深刻的印象,而且还具有导向作用。在一至四年级的除法“应用题”中,都是被除数大于除数,加之教材编排题型过于单一,缺少对比呈现。如果老师教学时缺少分析“数量关系”,或者有些老师为了追求成绩,直接告诉学生:“记住你就用大数除以小数!”以至于到了五年级形成习惯。所以,“应用题”教学一定要加强“数量关系”的分析。

数量关系就是学生在运用运算意义和基本数量关系解决生产、生活中实际问题的基础上,对周围生活中的一些数量关系积累了一些感性的认识,教师可以适当地引导他们再抽象概括一些具体的数量关系式,大家习惯上称这种数量关系为“常见的数量关系”。例如:单价与数量、总价之间的关系,工作效率与工作时间、工作总量之间的关系,速度与时间、路程的关系,等等。

2.列式计算

列式计算是解决问题最重要的步骤,找信息,提问题,以及画示意图都是为了列出式子,算出答案。下了如此多的功夫就为了这一步骤,所以要求学生细心谨慎,不要看错数据。记错数。

3.回顾与反思

回顾和反思学习过程,总结学习方法,积累教学活动经验,感悟数学思想方法。在回顾中感受成功,增强学习自信心,养成反思习惯。在教学中,我们要重视回顾和反思。其实回顾与反思属于检查。检查在列式中有没有写错加减乘除,检查式子中有没有看错数据,写错数据,检查有没有计算错误,比如低年级的满十就进一,不够减就退一,乘法口诀有没有出错,高年级的小数点有没有点错,或者分数的约分是否约完整等等。

总的来说,正因为小学数学解决问题的教学是《新课程标准》中规定的课程目标之一,在小学数学中占有非常重要的地位,是教学中的最难点之一。所以就解决问题中的阅读与理解、分析与解答和回顾与反思进行浅谈,希望对小学数学解决问题的解决方法起到作用。

3. 总结小学数学教学中如何解决问题的方法和要领

培养数学问题解决的有效策略
数学教学不可能把各式各样的数学问题一一讲全,版把解答的方法都教权给学生。数学教学的功能是帮助学生习得数学问题解决的一些常用的基本方法,并引导他们灵活应用这些方法,适应问题的千变万化,即“策略”。小学生具有数学问题解决的策略表现为:积累了一些常用的解决问题的方法;经常灵活地应用方法解决问题;对合理地使用方法有所体验、有些经验。

4. 如何上好小学数学中"解决问题"的教学

应用题对孩子综合能力要求比较高:
1、首先要求孩子要能读懂题意,阅专读理解能力必须要培养;
2、理属解题意还要能将公式定理、数字和题意结合,做出列式解答;
3、解答过程中,还要要求计算不出错,对孩子计算能力也是种考验。
所以,如果孩子应用题做的不好,建议参考这几点,对照孩子哪里有不足,加强练习即可。

5. 一年级数学解决问题200道

1.哥哥4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?
2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?
3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人?
4.有一本书,小华第一天看了2页,以后每一天都比前一天多看2页,第4天看了多少页?
5.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?
6.有8个皮球,如果男生每人发一个,就多2个,如果女生每人发一个,就少2个,男生有多少人,女生有多少人?
7.老师给9个三好生每人发一朵花,还多出1朵红花,老师共有多少朵红花?
8.有5个同学投沙包,老师如果发给每人2个沙包就差1个,老师共有多少个沙包?
9.刚刚有9本书,爸爸又给他买了5本,小明借去2本,刚刚还有几本书?
10.一队小学生,李平前面有8个学生比他高竺嬗?个学生比他矮,这队小学生共有多少人?
11.小林吃了8块饼干后,小林现在有4块饼干,小林原来有多少块饼干?
12.哥哥送给弟弟5支铅笔后,还剩6支,哥哥原来有几支铅笔?
13.第二中队有8名男同学,女同学的人数跟男同学同样多,第二中队共有多少名同学?
14.大华和小刚每人有10张画片,大华给小刚2张后,小刚比大华多几张?
15.猫妈妈给小白5条鱼,给小花4条鱼,小白和小花共吃了6条,它们还有几条?
16.同学们到体育馆借球,一班借了9只,二班借了6只。体育馆的球共减少了几只?
17.明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。布袋里原来有多少个白皮球,多少个花皮球?
18.芳芳做了14朵花,晶晶做了8朵花,芳芳给晶晶几朵花,两人的花就一样多?
19.妈妈买回一些鸭蛋和12个鸡蛋,吃了8个鸡蛋后,剩下的鸡蛋和鸭蛋同样多,问妈妈一共买回几个蛋?
20.草地上有10只羊,跑走了3只白山羊,又来了7只黑山羊,现在共有几只羊?
21.冬冬有5支铅笔,南南有9支铅笔,冬冬再买几支就和南南的一样多?
22.小平家距学校2千米,一次他上学走了1千米,想起忘带铅笔盒,又回家去取。这次他到学校共走了多少千米?
23.马戏团有1只老虎,3只猴子,黑熊和老虎一样多,问马戏团有几只动物?
24.春天来了,小明、小冬和小强到郊外捉蝴蝶,小明捉了3只,小冬捉了5只,他们一共捉了12只,小强捉了几只?
25.小华和爸爸、妈妈为植树节义务植树,小华植了1棵,爸爸植了5棵,妈妈比爸爸少植2棵,妈妈植了多少棵,他们一共植了多少棵?
26.第一个盘子里有5个梨,第二个盘子里有4个梨,把第一个盘里拿1个放到第二个盘里,现在一共有多少个梨?
27.小红有2个玩具,小英有3个玩具,小明的玩具比小红多2个,小明有几个玩具?
28.新星小学美术兴趣小组有学生9人,书法兴趣小组的人数和美术兴趣小组的人数同样多,这两个兴趣小组共?
29.3个男同学借走6本书,4个女同学借走7本书,他们一共借走多少本书?
30.王老师有12元钱,正好买一支钢笔和2个笔记本,如果只买一支钢笔,还剩6元钱,你知道一个笔记本多少钱?
31.日落西山晚霞红,我把小鸡赶进笼。一半小鸡进了笼,还有5只在捉虫,另外5只围着我,叽叽喳喳闹哄哄。小朋友们算一算,多少小鸡进了笼?
32.一只猫吃掉一条鱼需要1分钟。照这样,100只猫同时吃掉100条鱼需要几分钟?
33.5个小朋友同时吃5个苹果需要5分钟,照这样,10个小朋友同时吃10个苹果需要几分钟?
34.小华有10个红气球,小花有8个黄气球。小华用4个红气球换小花3个黄气球,现在小华、小花各有几个球?
35.13个小朋友玩“老鹰抓小鸡”的游戏,已经抓住了5只“小鸡”,还有几只没抓住?
36.天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?
37.小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书?
38.小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱?
39.欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱?
40.李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
41.15个小朋友排成一队,小东的前面有9人,小东后面有几人?
42.14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
43.13只鸡排成一队,其中有只大公鸡,从前面数,它站在第8,它的后面有几只鸡?
44.13只鸡排成一队,其中有只大公鸡,它的前面有8只鸡,它的后面有几只鸡?
45.有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
46.小力有18张画片,送给小龙3张后,两人的画片同样多。小龙原来有几张画片?
47.小华给小方8枚邮票后,两人的邮票枚数同样多,小华原来比小方多几格邮票?
48.大林比小林多做15道口算题,小明比小林多做6道口算题,大林比小明多做几道口算题?
49.小花今年6岁,爸爸对小花说:“你长到10岁的时候,我正好40岁。”爸爸今年多少岁?
50.动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。这只长颈鹿有多少岁?
51.6个小朋友分一袋苹果,分来分去多2个,问这袋苹果至少有几个?
52.一根60米长的绳子,做跳绳用去12米,修排球网用去30米,这根绳子少了多少米?
53.商场运回28台电视机,卖出一些后还剩15台,卖出多少台?
54.小虎学写毛笔字,第一天写6个,以后每天比前一天多写3个,四天一共写了多少个?
55.小云今年8岁,奶奶说:“你长到12岁的?焙颍??2岁。”奶奶今年多少岁?
56.最小的三位数减去最小的两位数,再减去最小的一位数,所得的结果是多少?
57.妈妈从家里到工厂要走3千米,一次,她上班走了2千米,又回家取一很重要工具,再到工厂。这次妈妈上班一共走了多少千米?
58.一辆公共汽从东站开到西站,开一趟。如果这辆车从东站出发,开了11趟之后,这辆车在东站还是西站?
59.一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?
60.小明和小亮想买同一本书,小明缺1元7角,小亮缺1元3角。若用他们的钱合买这本书,钱正好。这本书的价钱是多少?他们各带了多少钱?
61. 有35颗糖,按淘气—笑笑—丁丁—冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?
62.淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?
63.5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?
64. 30名学生报名参加美术小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人?
65. 有两篮苹果,第一篮25个,第二篮19个,从第一篮中拿几个放入第二篮,两篮的苹果数相等?
66. 小力有18张画片,送给小龙3张后,两人的画片同样多。小龙原来有几张画片?
65. 小华给小方8枚邮票后,两人的邮票枚数同样多,小华原来?
68. 动物园里有只长颈鹿,它的年龄数是用最大的两位数减去最小的两位数,再减去最大的一位数后所得的数。这只长颈鹿有多少岁?
69. 6个小朋友分一袋苹果,分来分去多2个,问这袋苹果至少有几个?
70. 小明全家早上、中午、晚上各吃4个苹果。一天中,小明家吃了多少个苹果?
71. 商场运回28台电视机,卖出一些后还剩15台,卖出多少台?
72. 小虎学写毛笔字,第一天写6个,以后每天比前一天多写3个,四天一共写了多少个?
73. 小云今年8岁,奶奶说:“你长到12岁的时候,我62岁。”奶奶今年多少岁?
74. 最小的三位数减去最小的两位数,再减去最小的一位数,所得的结果是多少?
5个小朋友同时吃5个苹果需要5分钟,照这样,10个小朋友同时吃10个苹果需要几分钟?
大林比小林多做15道口算题,小明比小林多做6道口算题,大林比小明多做几道口算题?
75. 小花今年6岁,爸爸对小花说:“你长到10岁的时候,我正好40岁。”爸爸今年多少岁?
76. 小华有10个红气球,小花有8个黄气球。小华用4个红气球换小花3个黄气球,现在小华、小花各有几个球?
77. 新星小学美术兴趣小组有学生9人,书法兴趣小组的人数和美术兴趣小组的人数同样多, 这两个兴趣小组共有多少名学生?
78. 天色已晚,妈妈叫小明打开房间电灯,可淘气的小明一连拉了9下开关。请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?
79. 小青有9本故事书,小新有7本连环画,小青用3本故事书换小新2本连环画,现在小青、小新各有几本书?
80. 小敏到商店买文具用品。她用所带钱的一半买了1支铅笔,剩下的,一半买了1支圆珠笔,还剩下1元钱。小敏原来有多少钱?
81. 欢欢和乐乐去买练习本,欢欢买了4本,乐乐买了6本,欢欢比乐乐少花1元钱,一本练习本多少钱?
82. 李老师带有60元钱,正好买一个足球和两个排球。如果只买两个排球,还剩28元。一个足球多少钱?一个排球多少钱?
83. 一只小黑羊排在小白羊队伍里,从前面数小黑羊是第7只,从后面数小黑羊是第4只。这队小羊一共有多少只?
84. 14个同学站成一队做操,从前面数张兵是第6个,从后数他是第几个?
85. 13只鸡排成一队,其中有只大公鸡,从前面数,它站在第8,它的后面有几只鸡?
86. 13只鸡排成一队,其中有只大公鸡,它的前面有8只鸡,它的后面有几只鸡?
87.小明今年10岁,妈妈今年38岁,当小明15岁时,妈妈多少岁?
88.小明和小红都集邮票。小明给了小红6枚后,两人的邮票同样多,原来小明的邮票比小红的多多少枚?
89.龙龙用4元买一个菠萝,用买一个菠萝的钱可以买1千克香蕉。买1千克香蕉的钱可以买4个梨。每个梨多少元?
90.强强和小华打了2小时的乒乓球,每人打了多少小时?
91.有一个两位数,个位上的数比十位上的数多5,这个数可能是多少?
92.参加数学比赛的同学有40人。小红和一起参加比赛的同学每人握一次手,一共握多少次?
93.18个同学排队做操,明明的右边有10个人,他的左边有几个?
94.一只钟的对面有一面镜子,镜子里的钟表如下图,那么钟表上正确的时间是几时?钟表上现在时间是几时?
95.华华家上面有3层,下面有2层,这幢楼共有多少层?
96.操场上站着一排男同学,一共有6个,在每两个男同学之间站2个女同学,一共站了多少个女同学?
97.小花今年10岁,她比爸爸小28岁,去年,她比爸爸小多少岁?
98.小猴与小兔去摘桃,小猴摘下15个桃,当小猴将自己的桃分3个给小兔子时,它俩的桃就一样多,你知道小兔子摘了多少个桃?
99.小明暑假和父母去北京旅游,他们和旅游团的每一个人合照一次像,一共照了15张照片,参加旅游团的共有多少人?
100.小军跟爸爸到外地旅游,爸爸买一张火车票是5元,小军买半票,他们来回一共要付多少元?

1、同学们要做10个灯笼,已做好8个,还要做多少个?
2、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?
3、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?
4、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?
5、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?
6、小强家有10个苹果,吃了7个,还有多少个?
7、汽车总站有13辆汽车,开走了3辆,还有几辆?
8、小朋友做剪纸 ,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?
9、马场上有9匹马,又来了5匹,现在马场上有多少匹?
10、商店有15把扇,卖去5把,现在有多少把?
11、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?
12、小青两次画了17个 ,第一次画了9个,第二次画了多少个?
13、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?
14、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?
15、家有11棵白菜,吃了5棵,还有几棵?
16、一条马路两旁各种上48棵树,一共种树多少棵?
17、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?
18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?
19、学校体育室有6个足球 ,又买来20个,现在有多少个?
20、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅?
21、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?
22、图书室里有20个女同学,有10个男同学,男同学比女同学少多少个?
23、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?
24、学校有10个足球,16个篮球,足球比篮球少多少个?
25、花园里有兰花40盆,菊花60盆,兰花再种多少盆就和菊花同样多?
26、妈妈买红扣子18个,白扣子10个,黑扣子8个。
(1)红扣子比白扣子多多少个?
(2)黑扣子比白扣子少多少个?
27、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?
28、有两层书架,第一层有16本书,第二层比第一层多8 本,第二层有多少本?
29、妈妈买苹果6个,买梨子比苹果多4个,买梨子多少个?
30、饲养组有30只公鸡,母鸡比公鸡多48只,有母鸡多少只?
31、四年级有84人去郊游,五年级比四年级多去8人,五年级有多少人去郊游?
32、小合唱队有28个女同学,男同学比女同学少4个,男同学有几个?
33、小华家养32只白羊,黑羊比白羊少12只,养黑羊多少只?
34、同学们参加劳动,摘黄瓜40筐,摘的白瓜比黄瓜少18筐,摘白瓜多少筐?
35、小明拍皮球,第一次拍35下,第二次比第一次少拍7下,第二次拍多少下?
36、小英做红星30个,做的黄星比红星少12个,做黄星多少个?
37、学校买回白粉笔37盒,彩色粉笔8盒 ,买回粉笔共多少盒?
38、学校买回白色、彩色粉笔共45盒,其中彩色粉笔8盒,买回白粉笔多少盒?
39、学校买回白粉笔37盒,彩色粉笔8盒,彩色粉笔比白粉笔少多少盒?
40、学校买回彩色粉笔8盒,买回的白粉笔比彩色粉笔多29盒,买回白粉笔多少盒?
41、学校买回白粉笔37盒,买回的彩色粉笔比白粉笔少29盒,买回彩色粉笔多少盒?
42、果园里有荔枝树35棵,龙眼树26棵。
(1)两种树一共有多少棵?
(2)龙眼树比荔枝树少多少棵?
43、小英做红花42朵,做黄花34朵,做白花15朵。
(1)红花比黄花多多少朵?
(2)白花比红花少多少朵?
(3)白花比黄花少多少朵?
(4)一共有多少朵花?
44、选一个合适的问题,画上“ ”,再算出来。
(1)商店两次卖出洋娃娃50个,第一次卖出30个,……?
①第一次卖出多少个?
②第二次卖出多少个?
③两次卖出多少个?
(2)有60只小鸡,28只母鸡。
①还剩多少只?
②母鸡比小鸡少多少只?
③一共有多少只?
45、选一个合适的条件,画上“ ”,再算出来。
(1)校园里有18盆菊花,……,兰花比菊花少多少盆?
①运走了16盆;
②还剩5盆;
③兰花16盆。
(2)幼儿园买苹果50个,……,买梨子多少个?
①分给小朋友12个;
②梨比苹果少12个;
③梨比苹果多12个。
46、先连接合适的条件和问题,再解答。
(1)有白兔和灰兔共30只,有白兔24只。
原来有多少只?
有灰兔多少只?
(2)有一些兔,跑了4只,还有18只。还剩多少只?
湖边有30只天鹅,飞走20只后,还剩多少只?
学校买来白粉笔和彩色粉笔共80盒,白粉笔60盒,彩色粉笔多少盒?
明明一天要做30道数学题,已经做了8道题,还要做多少道题?
学校体育组有18根跳绳,又买来22根,现在有多少根?
莉莉买一件上衣用28元,买一条裙子用22元,这两件衣服一共花了多少元钱?
一棵大树高12米,比小树高8米,小树有多高?
一段铁丝用去28米,还剩12米,这段铁丝全长多少米?
王红看一本45页的故事书,已经看了15页,还剩多少页没看?
树上有些小鸟,第一次飞走12只,第二次飞走8只,两次共飞走多少只小鸟?
饲养小组养了45只小白兔和25只小灰兔,卖掉了15只后,还剩下多少只小兔?
一班做了18只风筝,二班做了15只风筝,一班比二班多做多少只?
一班有男生25人,女生20人,女生比男生少多少人?
幼儿园买了45个红气球和同样多的花气球,一共买了多少个气球?
小亮摘了37个苹果,姐姐摘了48个,两人共摘了多少个苹果?
小熊做了29朵花,大象做了38朵花,它们俩一共做了多少朵?大象比小熊多做几朵?
小强两天看完一本88页的故事书,第一天看了35页,第二天看了多少页?
同学们做了48朵工艺花,送给幼儿园小朋友30朵,还剩多少朵?
有一筐苹果,吃了15个后,还剩37个,这筐苹果原来有多少个?
一班有男生18人,女生24人,这个班共有多少人?男生比女生少多少人?
一辆吧士车,到中心站下车15人,又上来8人后,车上有17名乘客,车上原来有多少人?
丽丽有20元钱,买文具用去12元,妈妈又给她20元,她现在有多少元?
小强身高98厘米,弟弟比他矮12厘米,弟弟有多高?
小佳读一本故事书,先读了17页,剩下的页数比已读的多4页,这本书共有多少页?
小明有连环画15本,故事书27本,科技书的本数比连环画和故事书的总数少18本,科技书有多少本? 某城市的外环线长72千米,中环线比外环线少37千米,中环线长多少千米? 商店运进肥皂24箱,香皂18箱,毛巾的箱数比肥皂和香皂的总和少3箱,运进毛巾多少箱? 广场上空有红气球38个,黄气球比红气球少13个,花气球比黄气球多36个,花气球有多少个? 体育组有25个足球,12个篮球,排球的个数比足球和篮球的总和少17个,排球有多少个? 食堂运来95斤黄瓜,比西红柿我35斤,经土豆多80斤,西红柿和土豆共多少斤? 跳绳比赛,王红跳了66个,比想丽多跳了13个,比赵琳多跳了25个,李丽和赵琳共跳了多少个? 有75棵树苗,25棵杨树,36棵是柏树,剩下的是柳树,问柳树有多少棵? 跳绳比赛,王红跳了66个,比李丽多跳了13个,比赵琳多跳了25个,李丽和赵琳共跳多少个? 一块布长80米,第一次用去25米,第二次用去15米,这块布还剩多少米? 姐姐去上学,已经走了38米,还离学校有62米,姐姐每天上学要走多少米? 冰箱里有30支冰棒,已经吃了20支,还剩多少支?吃了的比剩下的多多少支? 小静今年7岁,她妈妈今年34岁,再过8年后,妈妈比小静大多少岁? 国风电器行,上午卖出彩电28台,黑白电视9台,共卖出电视机多少台?下午卖出20台,比上午少卖了多少台? 芳芳看一本书,第一天比第二天少看了16页,第一天看了30页,第三天看了多少页? 粮食专柜有大米56包,卖走30包后,又运来24包,现在有多少包大米? 爸爸给阳阳50元钱,阳阳买书和文具用去29元,妈妈又给他21元,现在阳阳有多少钱? 一本书有96页,亮亮第一天看了28页,第二天看了35页,还有多少页没有看? 饲养场有牛58头,羊25头,卖走36头后,还剩多少头? 小明有12张贺卡,小平和小明同样多,小红的贺卡比小平少3张,小红有几张贺卡?三人共有多少张贺卡?

自己分下段 实在太多了。我懒死了。

6. 小学数学解决问题的知识点

小学数学概念教学中应注意的问题:
1、要注重数学概念的引入、形成与巩固
数学概念的教学一般也分为三个阶段:①引入概念,使学生感知概念,形成表象;②通过分析、抽象和概括,使学生理解和明确概念;③通过例题、习题使学生巩固和应用概念。

概念的引入有四种:以感性材料为基础引入新概念;以新、旧概念之间的关系引入新概念;、以“问题”的形式引入新概念;从概念的发生过程引入新概念。比如《百分数的意义》一课中是这样引入入概念的……,《认识整万数》是这样引入入概念的……。

概念的形成有三种:对比与类比;恰当运用反例;合理运用变式。比如今天的课中……

概念的巩固有三种:及时复习;重视应用;注重辨析。如……

2、要把握好概念教学的目标,处理好概念教学的发展性与阶段性之间的矛盾。

概念本身有自己严密的逻辑体系。在一定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和变化,同时也由于人们认识的不断深化,因此,作为人们反映客观事物本质属性的概念,也是在不断发展和变化的。在小学阶段的概念教学,考虑到小学生的接受能力,往往是分阶段进行的。如对“数”这个概念来说,在不同的阶段有不同的要求。开始只是认识1、2、3、……,以后逐渐认识了零,随着学生年龄的增大,又引进了分数(小数),以后又逐渐引进正、负数,有理数和无理数,把数扩充到实数、复数的范围等。又如,对“0”的认识,开始时只知道它表示没有,然后知道又可以表示该数位上一个单位也没有,还知道“0”可以表示界限等。
数学概念的系统性和发展性与概念教学的阶段性成了教学中需要解决的一对矛盾。解决这一矛盾的关键是要切实把握概念教学的阶段性目标。如《认识整万数》
因此,教学概念,既要重视概念的阶段性,又要注意到概念发展的连续性,不要在一个知识段中把概念讲“死”,以免影响概念的发展和提高,也不要把后面的要求提到前面,超越学生的认识能力;又要注意教学的连续性,教前面的概念要留有余地,为后继教学打下埋伏。从而处理好掌握概念的阶段性与连续性的关系。
3、加强直观教学,处理好具体与抽象的矛盾
对于小学生来说,数学概念还是抽象的,他们形成数学概念,一般都要求有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复,从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作、思维活动逐步建立起事物一般的表象,分出事物的主要的本质特征或属性,这是形成概念的基础。因此,在教学中,必须加强直观,以解决数学概念的抽象性与学生思维形象性之间的矛盾。
(1)通过演示、操作进行具体与抽象的转化
(2)结合学生的生活实际进行具体与抽象的转化

运用直观并不是目的,它只是引起学生积极思维的一种手段。因此概念教学不能只停留在感性认识上,在学生获得丰富的感性认识后,要对所观察的事物进行抽象概括,揭示概念的本质属性,使认识产生飞跃,从感性上升到理性,形成概念。
4、在概念的形成过程中,要让学生积极参与,充分发挥教师的主导作用和学生的主体作用。让学生参与形成概念的分析、比较、归纳、综合、抽象、概括等一系列思维活动,学生的学习积极性就会很高,而且对形成的概念记忆深刻,理解透彻。
5、建立概念系统。
在学生理解和形成概念之后,引导学生对学过的概念进行归纳整理,把有关的概念沟通起来,形成知识网络,使其系统化,如《认识整万数》以后的几课时。

小学数学常考题型:

小学数学应用题综合训练(01)
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?

44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之几?

49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?

50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?

52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?

53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?

54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.

55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.

56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?

57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?

58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,
54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?

59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.

60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.

小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?

62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?

63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?

64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.

65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?

亲,不满意请追问O(∩_∩)O!

7. 小学数学中解决问题的策略有哪些

要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。

一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。

二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。

关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。

阅读全文

与中小学数学解决问题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99