导航:首页 > 中小学校 > 中小学数学

中小学数学

发布时间:2020-11-28 06:49:57

『壹』 "一个中小学数学主题"怎样理解

主题中的“主题图”可以分为两类:一类是出现在单元前的主题图,这类主题图容量大、涵盖面广,有时蕴含了整个单元知识的内容,如一(上)“20以内的进位加法”、一(下)“20以内的退位减法”、 二(上)“100以内的加法和减法(二)”、二(下)“解决问题”等单元前面的主题图。第二类主题图则是某个知识点的主题图,这类主题图的容量不是很大,往往呈现了本节课所要研究的问题,重点突出,主题明确。从课程理念和教材设计的角度来看,“主题图”具有三大特点: 
(一)童趣性 
心理学的研究成果表明,儿童喜欢在轻松愉快的情境中学习,情绪状态越好,学习效果就越佳。主题图依据学生的这一心理特点。把数学知识融入到儿童喜欢的小动物、游乐场等充满童趣的内容中,激发学生主动参与学习的情感,有利于唤起学生探索问题的积极性,促使学生全身心地投入到学习活动中去。 
(二)启发性 
主题图往往都是图文并茂的,图中隐含着数学的知识,有用图示意的,启发学生根据已有经验大胆猜想;有用文字的方式加以旁注,目的是帮助学生提取图中有关的数学信息,启发学生提出开放性的数学问题,促进学生数学思想和思维的迁移。 
(三)现实性 
数学来源于生活,存在于生活,并且应用于生活。主题图所呈现的数学知识都是符合学生的生活实际,把学校组织的春游活动、到商场买东西的场景、游乐园中的游乐项目等“身边的生活”引入数学课堂。其目的是让学生认识到数学与实际生活的联系,让学生在不知不觉中感悟数学的真谛,学会用数学的思维方式去观察、分析现实社会,去解决生活中的问题,从而体会数学的价值和力量。 
二、理解“主题图”的用意,把握教学目标 
我们的数学教学应该建立在学生的生活经验的基础上,让学生在生动具体的情境中学习数学,教师应充分利用学生的生活经验,设计生动有趣,直观形象的数学教学活动如运用讲故事、做游戏、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情景中理解和认识数学知识。我们通过各种形式的教学,但最终的目的是理解和认识数学知识。如果教师不能深刻地理解和正确把握,则会给教学组织和实施带来一定的困难。因此,“主题图”教学要突出数学的特点,充分挖掘“主题图”中有利于三维目标的实现,而不能让“主题图”上成“看图说话”,从而失去“主题图”应有的价值。

『贰』 中小学数学衔接下如何教学

一、重视学生的自主意识和自学能力的培养,加强学法指导          

中学数学教材的内容增加了,小学升入初中的学生已具有一定的独立思考能力与自学能力,因此,教师因有意识、有步骤地指导学生怎样做好预习——听课——复习——作业——单元小结五个环节;怎样理解与掌握好基础知识;怎样进行数学阅读;怎样运用科学记忆法提高学习效率;怎样做好总结与归纳等。在此基础上,教师可让学生运用学到的方法自学,充分动脑、动口、动手,鼓励学生勇于质疑问难,教师则抓住契机,巧为点拨,为学生释疑解难,努力消除学生的依赖心理,逐步培养学生的自学能力和独立思考能力,使学生成为学习的主人。   

二、引导学生积极参与数学活动,掌握学习方法          

在学生刚进入初中时候,教师可适当降低要求,帮助学生打好基础,对综合问题采取分解的方法,分解成几个学生可以接受和理解的问题,引导他们积极参加数学活动,在合作中交流,在交流中合作,从而掌握知识和领会学习方法。在活动中也要珍视他们的点滴进步,保护学生的学习热情。         

三、纠正课后复习的不良做法          

小学毕业刚升入初中的学生往往存在一些错误的复习方法,比如:(1)不复习;(2)粗略复习;(3)先做作业,后复习;(4)一次性完成课外复习任务;(5)单打一的复习方式。面对这些错误的做法,教师要有针对性地启发和引导,帮助他们正确复习、科学复习。         

四、纠正学生及家长的错误认识          

(1)仅靠兴趣支持学习还不行。要教育学生产生理想和期望,用理想来支持学习。         

(2)等待教师传授还不行,要学会自学,养成自学习惯,提高自学能力。

(3)要学会自己安排学习,应适当放宽控制,给学生时间和空间安排学习内容、选择学习方式。如找同学讨论、向教师请教等。         

总之,学生从小学到中学主观上虽然都存在着一种求知的良好愿望,但客观上也存在着很多不适应的地方,如果不能引导学生过好这一关,不注意采用根据由小学到中学这个过渡期的特点的教学措施和方法来教学,学生的学习积极性就会丧失,成绩就会大大退步。因此,做好中小学数学教学工作的衔接尤为重要,对搞好中小学数学课堂教学和提高教学质量,有着深远的现实意义。

『叁』 中小学数学现在难度如何

数学需要天赋,70%的天赋,30%的努力。对于勤奋聪明的孩子不难,只是复杂,做到化繁为简。对于笨的孩子,确实很难,数学可以用勤奋去补,但是遇到更难的题则不会有举一反三的方法,依然很难。数学玩的好的都去参加竞赛了,数学学的不好的,只能去补课。

『肆』 怎样做好中小学数学教学的衔接工作

中小学数学教学衔接问题及对策
转自:松柏中心学校课题组
我们时常听到有的学生家长说:“我的孩子在小学数学考试成绩大多都在八十分以上,很少有不及格的情况。怎么升初中后数学成绩下滑这么快?”,我们调查了几届六年级学生升入初一后的数学成绩发现的确存在这一现象。走访其他学校,发现也存在同样的问题。
目前随着新课标的深入落实,中小学数学教学所存在的脱节现象日益严重,一部分学生进入初中后,由于新知识的增加引发了许多的变化,视野的扩展、思维方式的改变致使一部分刚步入初中门槛的学生一时难以适应,导致成绩一时明显下降。按照思维发展规律,思维方式的转变需要一个过程,如何缩短这个过程?如何搞好中小学数学教学衔接,使中小学的数学教学具有连续性和统一性,使学生的数学知识和能力都衔接自如,是摆在我们教师面前的一个重要任务。本文就衔接问题及对策提出粗浅的的看法,供同行们商榷。
一、当前中小学数学教学衔接存在的问题
1.从小学到中学数学知识从横向、纵向两方面扩展
(1)数的范围发生了变化
从小学进入中学,学生遇到一些新的问题。比如,测量温度,当气温在零度以上时,学生能用小学所学的数表示其温度的高低,但当气温在零度以下时,就难以用小学所学的数表示了。再比如,测量一座山的海拔高度(以海平面为零界面),用小学所学的数也就可以表示了,但测量海平面以下海水的深度时,又如何表示呢?为解决这类实际问题,引入了“负数”的概念。这样初中所学的数,就由小学所学的正整数、正分数和零扩大到包含正数、负数和零的有理数范围。随即又出现了一类新的数,如:已知正方形的面积为2,它的边长是多少?于是又引入了无理数的概念。数的范围又扩大到包括有理数和无理数在内的实数的范围。
(2)数的形式发生了变化
在小学范围内,解决实际问题,是可视为实物个数的数通过运算得出结论。升入中学,数的范围扩大到有理数和实数之后,与小学相比难度大大增加,其形式上也发生了变化。一个点、一条线段的长度、一个数值都可用一个有理数或无理数表示出来了。但是另一类数又如何简单地表示呢?比如:用n表示整数,2n就表示偶数,2n+l就表示奇数,这样就解决了所有奇偶数的表达问题。一个简单的代数式就表示了无数个现实的数,变量之间的函数关系等,使学生由常量数学走入变量数学学习,这样的变化给学生提供了更广阔的思维空间。
( 3)解决问题的方法发生了变化
在未引入代数知识之前,解决实际问题大多用的是算术方法,即由若干已知数值,采用的直接推出的办法得出结果。而引入代数概念后,给解决实际问题提供了更加简捷的途径。把问题中给出的己知量和问题所求的结果——未知量,均视作已知,按照数学逻辑,建立等量关系,然后通过运算求出未知数。这种方法就是方程的思想方法。
所以小学解决数学问题使用的是直推法,由己知数间的关系直接推出结论。中学解决数学问题,使用的是假设法,即先假设所求的未知数为己知数,把它和其它已知数按照题中所给出的关系组成等式,然后再通过求解得出结论。
(4)几何拓展,不断提升
新课标对几何内容的安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质展现出来。在几何内容上从小学到中学的变化,实际上是从“实验几何”过渡到“推理论证几何”。推理几何仍是传统难关。
2、教学方法法衔接问题
目前,“衔接”上最大的问题是教学方法的严重脱节。小学教学进度慢、坡度缓;而中学教学进度快、坡度大。小学直观教学多,练习形式多;而中学直观教学少,练习形式少,教师辅导也少。小学重感性知识,口头回答问题多;而中学重理性知识,书面回答多。小学强调直观演示、偏重形象思维;而中学强调推理论证,偏重抽象思维。所以学生刚进中学感到不适应。
3、学习方法衔接问题
小学阶段科目少,内容浅,而中学课程增多,内容拓宽,知识深化,尤其是数学由具体发展到抽象,由静态发展到动态,学生认识结构发生了根本变化,加之一部分学生还未脱离教师的“哺乳期”,没有自觉学习的能力,致使有些学生因不会学习或学不得法而成绩下降,久而久之失去学习数学的信心和兴趣,开始陷入厌学的困境。
4、学习兴趣的衔接问题
学习兴趣是对学生学习活动或学习对象的一种力求趋近或认识的倾向。如对数学有兴趣,则能唤起学生的求知欲,能推动学生去克服学习上的困难。“灌”和“压”的办法,使不少的小学教师把数学课堂教学教得枯燥无味,使不少学生听到数学就头痛,对数学学习“望而生畏”。在教师的严加管束下,学生虽然没有兴趣,但也只得被动地勉强应付。可到了中学,强调自觉学习,教师稍一放松督促辅导,成绩下降,学生就对数学敬而远之。学生对数学缺乏兴趣,会引起动机与效果间的恶性循环。
5、作业格式衔接问题
目前,中小学数学作业在书写格式上有许多地方不统一,小学生长期形成的作业习惯,升入中学后,一下子很难转变过来,也造成了学习上的困难。例如:计算结果是假分数的,在小学一定要化成带分数,而在中学就不一定要化成带分数。又如:在中学不强调区分所谓被乘数和乘数,而在小学被乘数和乘数有严格的规定。又如:在中学解题时先要写“解”,而小学又不要求写。
二、中小学数学教学衔接的对策
要搞好中小学数学教学的衔接,使中小学的数学教学具有连续性和统一性,使学生的数学知识和能力都衔接自如,须要中小学数学教师的共同努力,要从小学角度考虑与中学的衔接,也要从中学角度考虑与小学的衔接。
1、教学内容的衔接
第一个衔接点:由“算术数”发展到“有理数”。
小学数学里的数都属“算术数”,从“算术数”发展到“有理数”是数学的一次飞跃,是初一学生遇到的第一个难点。小学里应该为这次飞跃作好孕伏,打好基础。
1.在揭示整数的概念时,要给数的发展留下余地,不能说“整数就是自然数”。而应该说“自然数属于整数”。还可以用如下的集合图表示整数的范围,以示整数除自然数外还有其它的数。
2.早期渗透相反意义的量的认识。小学虽不讲负数,但表示相反意思的量的名词述语是比较多的。如“收人和支出”、“增加和减少”、“上升和下降”等。在数学教学中要有意识地为负数出现作好铺垫,并可出现符号。
3.重视利用数轴上的点表示数。中学生数学里一开始就是利用数轴学习有理数的。因此,在小学里要重视利用数轴上的点表示数。在20以内加减法教学中就可孕伏了数轴的知识。在中高年级还应要重视利用数轴上的点表示小数、分数并作加减计算。
第二个衔接点:由“数”到“式”的过度。从具体的量过度到抽象的数这是数学的一次飞跃,从确定的数过度到用字母表示数,引进代数式又是一次飞跃。从“数”过度到“式”的桥梁则是“字母表示数”。“简易方程”单元前安排了“用字母表示数”。这部分内容学生必须认真学好,使学生清楚地知道用字母表示数是实际的需要,这样表示的数和数量既简单明了,又具有含义的普遍性和应用的广泛性。以后,在计算应用题、几何初步知识的教学中,要有意识地充分运用“用字母表示数”的工具。
1.用字母表示运算定律法则。如:乘法分配律等。
2.用字母表示公式和常见的数量关系。如:三角形面积公式等。
3.用字母表示应用题中数量关系。如:果园里种桃m棵,种梨树8棵,种梨树的棵树是桃树的几倍?
第三个衔接点:由列算术式解应用题到列方程解应用题的过渡。
由列算术式解应用题到列方程解应用题,这是思维方法上的一个大转折。列算术式解应用题的思维特点是:把所求的量方放在特殊的地位,通过已知量求得未知量。列方程解应用题的思维特点是:把应用题的“已知”和“未知”根据它们的等量关系列出方程,然后通过解方程使未知向已知转化,从而求得问题的解答。因此,关键是找出数量关系中的等量关系。“简易方程”一章,重点放在掌握列方程解应用题的思维方法上。先引导学生用两种方法来解,然后再进行对照,使学生认清这两种解法的特点。以后在解应用题时,尽可能用代数式方法解,逐步克服算术解法定势。
第四个衔接点:从“实验几何”到“论证几何”的过渡。
小学数学里学习的几何初步知识,是通过让学生量一量、画一画、拼一拼、折一折得到一些几何概念,基础是属于实验几何的范畴,往往侧重于计算,缺少逻辑论证。学习中学平面几何的关键在于需要逻辑推理论证的能力。而在小学,这方面恰恰是薄弱点。从“实验几何”发展到“论证几何”过渡的桥梁则是逻辑推理论证能力。在小学数学教学中,可以如下几方面做好衔接工作。
1.充分发掘小学数学教材里潜在逻辑推理因素。
2.在应用题教学中,逐步培养学生说出分析推理过程,并学会语言和数学符号表达数量之间的关系。
3.在几何初步知识教学中,适当安排具有推理论证因素的练习题。
中学数学教学中教师应把握好主题内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例自然而然地引出代数式的概念。使学生感到升入初一就象小学升级那样自然,从而减小对初中内容望而生畏的恐惧感。
对于正负数这一概念的引入.可先将小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是因为原有的数集与解决实际问题之间的矛盾而引发新数集的扩展。这样既水到渠成地引入了有理数集合,又为再一次扩充作好了准备。引入负数概念时可举学生熟悉的例子,通过学生熟悉的问题可激发学生强烈的求知欲.学生就会去积极主动地思考。
现在初一学生年龄大都在11至l2岁,这个年龄段学生的思维正由形象思维向抽象思维过渡。思维的不稳定性以及分析综合能力尚未形成,决定了列方程解应用题的学习将是初一学生学习数学面临的一个难度非常大的坎。因为学生解题时只习惯于套用小学的老师总结好的公式,属定势思维,不善于分析,不善于转化和作进一步的深入思考,思路狭窄、呆滞,题目稍有变化就束手无策。因此,教学中要重视知识的发展过程。因为数学学习本身就是一种思维活动,教学中要尽可能让学生去思考。有些问题同时可用算术方法和代数方法,然后比较两种方法的优劣,使学生清晰地理解代数方法的每一步的感受它直接易懂的优越性.从而培养学生用列方程的方法解决问题的能力。
2、教学方法的衔接
教学方法的衔接,首先是教师必须结合学生的生理和心理特点,从学生的认知结构和认知规律出发,有效地改进教法,搞好教学方法上的衔接。因此,教师在教学中,要紧紧联系学生的生活实际,深入浅出的讲解,适当增加课堂练习的次数,严格统一书写格式。对每节课的教学难点,必须做到心中有数,采取有效方法,或放慢进度,或分散难点,或化难为易,或铺路搭桥,因势利导,充分揭示新旧知识的内在联系。要活跃学生的思维,有赖于教师在教法上的新型多变,正确、合理、巧妙地启发引导学生积极思维,使学生能正确地顺利地解决一个个习题和对概念的进一步理解。
其次在于培养学生的自学能力,从小学起就要抓紧学生自学能力的培养。
3、学习方法的衔接
教师重视数学学习方法的指导是非常必要的,因为学生是学习的主体,学习方法的正确与否,是做好中小学数学衔接的关键。
(1)预习方法的指导
小学阶段一般不要求学生预习,到了初一学生大多不会预习,也不知道预习起什么作用.既使预习也仅仅只是流于形式,草草看一遍,看不出问题和疑点。因此,教师要注重预习指导,加强预习训练。在指导预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本章知识的概况。二细读,对重要概念、公式,法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着问题去听课。只要学生认真预习,听课时常常就会有豁然开朗的感觉,这样就会逐步尝到自觉学习的甜头。从而激发学生预习的兴趣。预习前教师可先布置预习提纲,使学生有的放矢。实践证明,养成良好的学习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
(2)听课方法的指导
在听课方法的指导方面要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,应指导学生在听的过程中注意:①听好每节课的学习要求;②听好知识引入及知识形成过程;③听懂重点、难点剖析(尤其是预习中的疑点);④听懂例题解法的思路及数学思想方法的体现;⑤听好课后小结。教师讲课要重点突出,层次分明,要注意防止“填鸭式”、“满堂灌”,一定要掌握最佳讲授时机,使学生听之有效。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:①多思、勤思,边听边思考;②深思,即追根溯源地思考,善于大胆提出问题;③善思,由听到的和观察到的去联想、猜想、归纳:④树立批判意识.学会反思。可以说“听”是“思”的基础关键。“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师在黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:①记笔记服从昕讲,要掌握记录时机;②记要点、记疑问、记解题思路和方法:③记小结、记课后思考题。使学生明白“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
(3)课后复习巩固及完成作业方法的指导
初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习,以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,回顾课堂讲授的知识、方法,结合笔记记录的重点、难点。同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生:①如何将文字语言转化为符号语言;②如何将推理思考过程用文字书写表达;③正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、跟练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。
(4)小结或总结方法的指导
在进行平时的课堂小结、单元小结或复习总结时,初一学生容易依赖老师,习惯教师带着去复习总结。我们认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题目的类型及解题方法。
应该说学会总结是数学学习的最高层次。学生总结与教师总结应该结合,教师总结更应达到藉炼、提高的目的,使学生水平向更高层次发展。
4、学习兴趣的衔接
激发学生的学习兴趣,精心保护和培养学生发自内心的学习愿望和由此萌发出的学习上的自尊心和自信心是教与学的统一性的起点,没有兴趣,没有求知欲,何谈提高教育质量。激发兴趣首先应抓住课堂教学的引导这个环节,运用恰当的教学活动,激发学生的学习兴趣,启发学生参与教学活动的积极性。其次,因大部学生对同一目标的兴趣的稳定性、持续性都较差,所以,在教学中要注意参与状态,防止学生兴趣减退,保证学生参与的持续性,提高参与质量。随着参与兴趣的产生,参与积极性的提高,个别学生会出现与众不同的参与行为和独特的参与方式,影响到课堂秩序,教师应该以适当的方法巧妙纠正,做到既要引导全体进入角色,又不至于伤害其参与的兴趣。因此,在教学过程中,充分利用生动的事例,生活中的数学问题等来培养学生的学习兴趣,激发学生的学习热情,运用和蔼亲切的笑容,幽默诙谐的语言,营造浓郁的学习氛围,调动学生的学习积极性。
所以,在小学,教师要是以鼓励、诱导、启发等教学方法,使学生树立学习的信心,进而培养他们的学习数学的兴趣。中学教师也要继续注意激发学生的学习兴趣问题。这是一项极其重要的衔接工作。
5、作业书写格式的衔接
中学数学的表达式也可以先渗透到小学高年级。如:运算律用字母表示,图形的面积、体积、周长计算公式用字母表示,几何图形用字母注明,计量单位用字母表示等。这样做对小学高年级学生并不困难,并且有利学生用符号进行思考,促进抽象思维的发展。
六年级升入初一后,教师要对作业格式做统一要求,严格按照要求的格式认真书写。在测验时,可以对书写格式赋予一定的分值,而平时要多次强调,这样经过一段时间的训练,学生们会很规范的书写了。
6、中小学教师间的有效联系推进中小学数学衔接
打破中小学校与校之间的界限,给中小学数学教师多提供一些时间和空间,让他们有机会多交流,多探讨,加深相互学段的学生的了解。随着信息技术的发展,我们老师可以借助网络平台加大交流力度与深度。同时教育主管部门可以牵头带领相关教师多进行互动式教学,多安排一些集体教研的时间。作为老师,尤其是初一的老师更应当主动求教,为学生顺利实现中小学数学衔接提供帮助。
总之,解决好中小学数学教学衔接,既要注意中小学教材的衔接,又要注意学生从小学到中学在学习方法和学习习惯上的过渡;既要弥补旧知识的缺漏,又要认真巩固新知识;既要面向大多数,考虑大部分学生的知识基础和接受能力,又要注意因材施教。既要从小学角度做好衔接工作,也要从中学角度做好衔接工作。

『伍』 当前我国中小学数学教学模式有哪些特点

“瓜傻式”教学法----将数学那种严密的逻辑演绎过程还原为生动活泼的知识生成过程。通过让学生了解所学的数学知识的现实背景,感知知识的的产生过程。掌握解决问题的思路,知道思路的形成过程,这种方法,可以极大激发孩子们的求知欲和创作欲。使枯燥干涩的数学概念演绎变得生动起来。

方法/步骤
自主探索式学习----重点在于学生亲自体验学习过程 , 其价值与其说是学生发现 结论 , 不如说更看重学生的探索过程。自主探索式学习重视让每个学生根据自己的体 验 , 通过观察、实验、猜想、验证、推理等方式自由地、开放地去探究、去发现、去 “ 再创造 ” 有关数学问题口在这个过程中 , 学生不仅获得了必要的数学知识和技能 , 还对数学 知识的形成过程有所了解 , 特别是体验和学习数学的思考方法和数学的价值。合作学习----小学数学教学中经常被采用的形式。但目前小组合作学习效益高的较少 , 有的只是流于形式。有的研究者认为 , 小组学习有独立型、竞争型、依赖型、依存 型等几种类型。目前我们用得较多的是学生独立学习后相互交流 , 真正意义上的合作一一相互依存地来研究或者共同解决一个问题还太少。“实践活动”的教学方法----通过实践活动,培养学生的创新精神和实践能力,发掘学生潜能,让学生学有用的数学知识。……无论是“优选”还是“创新”,一般都应注意以下四点:一是教学方法的选用或创新必须符合教学规律和原则;二是必须依据教学内容和特点,确保教学任务的完成;三是必须符合学生的年龄、心理变化特征和教师本身的教学风格;四是必须符合现有的教学条件和所规定的教学时间。另外,在指导思想上,教师应注意用辩证的观点来审视各种教学方法。正所谓“教无定法”。
常用的教学方法
进入20世纪80年代以来,伴随着整个教学领域的深入改革,小学数学教学方法也呈现出蓬勃发展的势头。广大的小学数学教师和教学研究人员,一方面对我国传统的小学数学教学方法进行大胆的完善与改造,一方面积极地引进国外先进的教学方法,使我国新的教学方法,如雨后春笋,竞相涌现。一、小学数学新教学方法介绍(一)发现法发现法是由美国当代著名教育家、认知心理学家布鲁纳50年代至60年代初所倡导的一种教学方法。1、发现法的基本含义及特点发现法是指教师不直接把现成的知识传授给学生,而是引导学生根据教师和教科书提供的课题与材料,积极主动地思考,独立地发现相应的问题和法则的一种教学方法。发现法与其他教学方法相比较,有以下几个特点:(1)发现法强调学生是发现者,让学生自己去独立发现、去认识,自己求出问题的答案,而不是教师把现成的结论提供给学生,使学生成为被动的吸收者。(2)发现法强调学生内在学习动机的作用。学生最好的学习动机莫过于他们对所学课程具有内在的兴趣。发现法符合儿童好玩、好动、好问和喜欢追根求源的心理特点,遇到新奇、复杂的问题,他们就会积极地去探索。教师在教学中充分利用这一特点,利用新奇、疑难和矛盾等引发学生的思维冲突,促使他们产生强烈的求知欲望,主动地去探究和解决问题,改变了以往传统教学法仅利用外来刺激促发学生学习的做法。(3)发现法使教师的主导作用表现为潜在的、间接的。由于该法是让学生运用已有的知识和教师提供的各种学习材料、直观教具等,自己去观察,用头脑去分析、综合、判断、推理,亲自去发现事物的本质规律,所以在这个过程中教师的主导作用是潜在的、间接的。2、发现法的主要优点及其局限性发现法有如下几个主要优点。(1)可以使学生学习的外部动机转化为内部动机,增强学习的信心。(2)有助于培养学生解决问题的能力。由于发现法经常练习怎样解决问题,所以能使学生学会探究的方法,培养学生提出问题和解决问题的能力,以及乐于创造发明的态度。(3)运用发现法,有助于提高学生的智慧,发挥学生的潜力,培养学生优良的思维品质。(4)有利于学生对知识的记忆和巩固。在发现学习的过程中,学生可就已有的知识结构进行内部改组,这种改组,可以使已有的知识结构与要学习的新知识更好的联系起来,这种系统化和结构化的知识,就更加有助于学生的理解、巩固和应用。发现法也有一定的局限性。(1)就教学效率而言,使用发现法需要花费的时间比较多。因为学生获得知识的过程是再发现的过程,一切真理都要学生自己去获得,或者重新发现,而不是由教师简单地告诉学生,因此,教学过程必然经历一个较长时间的摸索过程。(2)就教学内容而言,它的适应是有一定范围的。发现法比较适用于具有严格逻辑的数、理、化等学科,对于人文学科是不太适用的。就适用的学科而言,也是只适用于概念和前后有联系的概括性知识的教学,如求平均数、运算定律等。而概念的名称、符号、表示法等,仍需要由教师来讲解。(3)就教学的对象而言,它更适用于中、高年级的学生。因为发现学习必须以一定的基础知识和经验为发现的前提条件,因此,年级越高的学生,独立探索的能力也就会越强。所以,并非所有的教学内容和教学对象都有必要和可能采用发现法教学。3、发现法教学举例(一位数除两位数的教学)给出一道题如39÷3。学生可先拿39个物品,每3个一份,把它们分成13份。做几个这样的题目后,可以让他们把物品10个组成一组。例如,给出这样一道题:“哈利买了4条糖果,每条有10块。他吃了1块,把剩下的每3块包成一包,分给同学们,分给了几个同学?”学生可能有以下几种解法:(1)每3个分成一堆,然后数出分得的堆数。(2)从3个10中各先拿出1个,剩下的每9个分给3个同学,再把其余的也每3个分成一堆。9+9+9+3+3+3+3=39(块)↓↓↓↓↓↓↓3+3+3+1+1+1+1=13(人)(3)与(2)相似,但他们看出有4个9。9+9+9+9+3=39(块)↓↓↓↓↓3+3+3+3+1=13(人)(4)他们看出3个10正好分给10个人,剩下的每3个分成一组。30+3+3+3=39(块)↓ ↓↓↓10+1+1+1=13(人)(5)与(4)相似,但他们看出剩下的9正好分给3个人。30+9=39(块)↓ ↓10+3=13(人)在学生得出解法之后,全班进行讨论。教师对不同的算法不给出评价。再出一道题,许多学生会选用比他第一次用的更为简便的方法。教师进一步提出引导性问题,促使学生找出更为有效的计算方法,形成一般的竖式计算。(二)尝试教学法尝试教学法是小学数学教学方法中一种影响比较大的教学方法。它是一种具有中国特色的教学方法。尝试教学法是由常州市教育科学研究所的邱学华老师最早设计和提出的,经过在一些地区和全国逐步推广,到现在已有十多年的时间,取得了很好的教学效果,甚至在国际上也有一定的影响。1、尝试教学法的基本内容什么是尝试教学法?尝试教学法的基本思路就是:教学过程中,不是先由教师讲,而是让学生在上知识的基础上先来尝试练习,在尝试的过程中指导学生自学课本,引导学生讨论,在学生尝试练习的基础上,教师再进行有针对性的讲解。尝试教学法的基本程序分为五个步骤:出示尝试题;自学课本;尝试练习;学生讨论;教师讲解。尝试教学法与普通的教学方法的根本区别就在于,改变教学过程中“先讲后练”的方式,以“先练后讲”的方式作为教学的主要形式。尝试教学法产生的背景是:在20世纪80年代初,我国教学改革已经走上了正轨,国内有许多教学改革的实验研究。同时,也有许多国外的教学改革的经验大量地介绍进来。在这种情况下,人们开始思考如何根据我国的教学改革的实验,研究和创造具有中国特色的,既符合现代教育改革的需要,又具有较强的操作性的教学方法。邱学华老师多年来进行小学数学教学的研究,在“文革”前后进行了多项小学数学教学改革方面的调查与实验,深感研究一种新的小学数学教学法的必要性。因此,他在分析和对比国内外教学改革的经验的基础上,提出了尝试教学法的设想。他借鉴了中国古代的“启发式教学”原理、发现法和自学辅导法教学的思路,综合地分析和研究这些教学法的长处与不足,试图形成一种独特的,具有操作性和可行性的教学方法。

『陆』 谈谈你对中小学数学教育的看法

中小学数学教育的终极价值,从根本上来说,不在于或主要不在于培养未来的数学家,而在于培育人的数学思想和解决问题的方法,开拓头脑中的数学空间,进而促进人的全面发展和提高。具体而言,义务教育阶段的数学"强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观念等多方面得到进步与发展。"

一、学习数学以拓展学生的智能结构

智能结构是数学教育所培养和形成人的素质中的主要组成部分之一。学生通过数与计算、空间与图形、量与计量、统计与概率、方程与关系,运筹与优化各个领域的学习,来观察、发现、了解现实世界,从而使学生充分认识到数学是从人类实践活动中产生和发展起来的,同时又广泛地应用于实践。学生通过对数学活动的参与,学习和掌握科学研究的基本方法,例如认真观察实验、大胆尝试猜想、小心合情推理、严格论证等;建立和增强数学意识如化归意识、抽象意识、推理意识、符号意识、量化意识等。

思维品质是智能素质的内核。数学思维的基本成分可分为具体思维、抽象思维、直觉思维、函数思维等四种基本类型。

这些品质比较全面地体现了逻辑思维、形象思维、直觉思维及辩证思维的主要特性。学生的思维品质可以通过经常性的数学思维训练得以改善和提高。优秀的思维品质表现为思维的灵活性、严谨性、批判性、广阔性及创造性。思维的灵活性表现为不过多地受思维定势的影响,能准确地调整思维的方向,善于从旧有的模式或传统的思维轨道上跳出来,能做到另辟蹊径,曲径通幽。我们在数学教育中提倡一题多解,就是培养思维灵活性的一条有效途径。思维的严谨性表现为考虑问题缜密有据。数学中,问题的解决允许运用直观的方法,但应当鼓励学生不停留在直观的认识水平上,可以运用合情推理,但要加以精密计算、逻辑论证。正确地使用概念,完整地解答问题等都体现出思维的严谨性。思维的批判性是指对已有的数学表述或论证敢于提出自己的看法,不是一味盲从。思维的广阔性是指对一个数学事例能做出多方面的解释,对一个数学问题能用多种形式表达,对一个问题能用多种不同的方法加以解决。思维的创造性是指思维活动的创新程度,表现为分析、解决问题时的方式、方法和结果的新颖、独特。善于发现、解决并延伸问题,是创新思维的一种体现。

这些良好思维品质的形成,必将逐步提升为一种创新意识和创造能力。而这些品质和能力正是我们教育工作者所追求的目标。

二、钻研数学以健全学生的心理素质
决定一个人的成败的关键并不真正取决于他们智商的绝对高下,而在更大程度上依赖于他们心理素质的优劣。也就是说,一个人的心理素质是否适应环境,是赢得学习和生活的必要条件,它在人素质形成中起着平衡调节作用。

问题是数学产生、起源与发展的动力,问题往往源于好奇。从瓦特观察沸水现象,到现在一些复杂的科学发现,无不发端于好奇。而青少年的好奇心表现得最为突出,随着人的年龄增大,反而渐渐失去了这种弥足珍贵的天性。数学是一门充满神秘与趣味的学科,如著名的"四色问题"、"七桥问题"等,诱发了多少天真儿童的好奇心,激活了多少数学天才的智慧。

数学的抽象性使得数学问题的解决经常伴随着困难,使学生体验到挫折和失败。而这正是砥砺意志、打磨心理品质的绝好时机,愈挫愈奋、百折不挠的良好心理素质不会在温室中形成。有位著名数学教育家对此作出过这样的论述:"如果学生在学校里没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学教育就在最重要的地方失败了。"

三、感知数学以增强学生的审美意识

数学美自古以来就吸引着人们的注意力。数学美不同于自然美和艺术美,数学美是一种理性的美,抽象的美,没有一定数学素养的人,不可能感受数学美,更不能发现数学美。数学美表现为它的简洁性、对称性、和谐性、统一性和奇异性。勾股定理以一个简单而整齐的形式表达了一切直角三角形边长之间的关系,其简洁与概括给人以美的享受。一些表面上看来复杂得令人眼花缭乱的对象,一经数学的分析便显得井然有序,从而唤起理性上的美感。如黄金分割体现出的比例美,令人赏心悦目。数学图形及数学表达式的对称给人视觉上的愉悦,例如二项展开式的系数,互为反函数的图像等。数学命题结构上的对称给人以最好的启发,由此及彼,推陈出新,引人无限联想。

四、体验数学以完善学生的人格

数学教人诚实和正直。英国律师至今要在大学里学习许多数学知识,美国的语言学硕士导师更愿意招录理工科的学生,这样做不是因为律师工作或语言研究与数学有多少直接联系,而是出于这样一种考虑,那就是经过严格的数学训练,能够使之养成一种独立思考而又客观公正的办事风格和严谨的学术品格。数学教育是培养学生诚信观念的主要渠道之一,在数学课上形成的诚信观是持久的,也是根深蒂固的。

受过良好数学教育的人,在数学的学习和训练中所形成的品质,会对其今后的工作产生积极影响。数学的精确、严格,使学生们将来在工作中减少随意性;数学的抽象分析,使他们善于透过现象洞察事物的本质。数学中精辟的论证、精练的表述,使他们的表达简明扼要。总之,我们不应把义务教育阶段的数学教育片面地理解成知识的传授和技能的训练。数学的终极价值在于,当学生步入社会后,也许很少有机会直接用到数学中的某个定理和公式,但数学的思想、数学的方法、数学的精神一定会伴随他们一生。作为数学教育者应该着眼于提高人的素质。正如新课标所倡导的那样,"人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上有不同的发展。"

『柒』 小学生学数学有什么好处啊

数学包涵了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等等二十几种思维方式,众所周知,思维能力是一个孩子的智力的核心,如果一个孩子在小学期间,思维能力得到了充分的锻炼。

数学能够快速有效、全面提高孩子智商的工具。数学学习对开拓思路有着重要作用。数学学习好的学生整个理科都会比较优秀,因为数学是理科的基础,物理化学都需要数学这个基础。正因为这个原因,重点中学喜欢招数学比较好的学生。

数学题基本上是比书上知识有所提高的内容,当孩子在做题当中遇到困难,想办法战胜它时,那种来自内心深处的喜悦比吃了十斤蜜枣还甜。一句话:数学让孩子学会了面对挫折、战胜困难,学会了永不言败的精神,建立起良好的自信。可以说既提高孩子的智商又能发展孩子的情商。

(7)中小学数学扩展阅读

数学是自然科学的基础,几乎所有的重大发现都与数学的发展与进步相关。正如华罗庚所说,宇宙之大、粒子之微、火箭之速、化工之小、地球之变、生物之谜、日用之繁,无处不用数学。”在余老师看来,加强数学科学研究,抓好中小学数学基础教育至关重要。

奥数是对有兴趣的、有天赋的少部分人进行创造性的思维培训,但不应是普及的,现在过早过度培训奥数,不但没有让学生的创造性思维得到发展,反而挫伤了部分学生的学习积极性,“真正要学好数学,应该是一步一个脚印、有目的、有兴趣地去学习。”

『捌』 小学数学教学的特点

1、目标预设化

新课程呼唤生成性课堂,决不意味着预设已不再重要,而是对预设提出了更高的要求,要求教师应当为“生成”去寻求灵活合理的“预设”让“预设”去促进有效的“生成”,才能在教学中使学生点燃思考的火花,拓展思维的空间,彰显生命的力量。

2、内容生活化

《小学数学课程标准》中指出,义务教育阶段的数学课程,“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行理解与应用的过程。”使数学教学贴近生活。

3、探究合作性

《小学数学课程标准》指出:“合作交流是学生学习数学的重要方式,在作交流、与人分享和独立思考的氛围中,倾听、质疑、说服、推广而直至感到豁然开朗,这是数学学习的一个新境界。”

4、思维个性化

每个学生都有自己的学习风格,外向型的学生开朗、活泼,喜欢请问老师,愿意和同学交谈,发表意见坦率,适合集体学习,便于解决疑难问题。内向型的学生情绪稳定,喜欢独立思考,注意力较集中,一般不喜欢集体学习。

(8)中小学数学扩展阅读:

小学教育专业坚持以培养德、智、体、美全面发展,有较高思想素养、宽厚基础知识、一定的教育科研能力和管理水平、良好综合素质,能适应小学教育改革、发展需要的具有现代教育观念和创新精神的小学教师为培养目标。其综合素质概括为一个核心、两种水平、六种能力、十二项基本功。

以师德为核心开展教育,努力使学生达到本科层次学术水平和小学教师的专业化水平,具备教育能力、教学能力、组织管理能力、活动指导能力、教学研究能力、学习发展能力,和讲、写、算、创、教、用、作、弹、唱、跳、画、练十二项基本功

『玖』 多项中小学数学竞赛为何会被叫停

叫停原因来是教育部要求,原则上不自得举办面向义务教育阶段的竞赛活动。

批准面向基础教育领域的各类竞赛、挂牌、命名及表彰等活动,应有法律法规或省部级以上文件为依据,坚持从严控制、严格审批,原则上不得举办面向义务教育阶段的竞赛活动。未经教育部批准,各类竞赛、挂牌、命名及表彰等活动不得冠以“全国”字样。

必须坚持公益、自愿原则,不得以任何理由和条件强行要求学校或学生参加此类活动,不得收取活动费、报名费和其它各种名目的费用,不得组织培训,不得推销或变相推销相关资料、书籍或商品,坚决克服逐利倾向。

(9)中小学数学扩展阅读:

中小学数学竞赛要求规定:

1、各级教育行政部门和学校不得承认违规开展的此类活动的成绩或结果。各级教育行政部门要加强对中小学校的管理和指导,广大中小学校不得组织中小学生参加各类违规举办的活动。

2、严禁组织与义务教育招生入学挂钩的“奥数”、等级评定、选拔性考试及学科类竞赛活动。

3、面向基础教育领域开展的竞赛、挂牌、命名及表彰等活动的获奖结果只能视为荣誉,不得作为中小学招生入学依据。

『拾』 中小学数学中的"为什么"pdf


代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算
法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的
主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的困难所在

为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一
章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要
环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用
一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数
量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没
有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生
感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。

初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目
的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:
(1)数学的特点。
(2)初中数学学习的特点。
(3)初中数学学习展望。
(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。
(5)注意观察、记忆、想象、思维等智力 因素与数学学习的关系。
(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。



学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指
正分数)
。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———
负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说
法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更
不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式
引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概
念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发
新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集

阅读全文

与中小学数学相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99