㈠ 运算法则与算理的区别和联系,在现代小学数学中如何运用
52852
㈡ 在小学数学中,说明了“0除外”或"不等于0”的,相互现在那些概念,性质,法则,公式中。
一个自然数(0除外)乘以真分数,积一定小于这个自然数。
㈢ 浅谈如何在计算法则教学中发展小学生的推理
小学生在数学课上学习一点有关推理的知识,是《课标》指定的一个重要的教学内容。《数学课程标准》中指出:“推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人学习和生活经常使用的思维方式。推理一般的包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。在小学阶段,主要学习合情推理,即归纳推理和类比推理。而归纳推理又多表现为不完全归纳推理”。数学推理,是从数和形的角度对事物进行归纳类比、判断、证明的过程,它是数学发现的重要途径,也是帮助学生理解数学抽象性的有效工具。在小学数学教学中,如能重视强化学生的推理意识,培养学生的推理能力,既有利于帮助学生形成言必有据一丝不苟的良好习惯,也有利于学生掌握科学的思维方法,促进已有知识、经验、技能的有效迁移,提高学生的学习效率。在小学数学教学中如何培养小学生的推理能力?下面谈谈我在教学中的一些体会。 一、在小学数学教学中,要让学生说理,养成学生推理有据的好习惯 语言是思维的外壳,组织数学语言的过程,也是教给学生如何判断的推理过程,而与语言最密不可分的是演绎推理,小学生解题时大多是不自觉地运用了演绎推理,因此教学中教师必须追问为什么,要求学生会想、会说推理依据,养成推理有据的习惯,例如:14和15是不是互质数时一定要学生这样回答:公因数只有1的两个数叫做互质数,因为14和15 只有公因数1,所以14和15是互质数。这样运用演绎推理方法,经常进行说理训练,有利于培养学生的演绎推理能力。 二、教给学生正确的推理方法 小学生学习模仿性大,如何推理、需要提出范例,然后才有可能让学生学会推理。小学数学中不少数学结论的得出是运用了归纳推理,教学时就要有意识地结合数学内容为学生示范如何进行正确的推理。例如,在教乘法交换律时,我是这样引导学生学习的,计算多组算式:5×3=15、3×5=15所以5×3=3×5还有:15×4=4×15引导学生观察、分析,找出这些算式的共同点:左、右两边因数相同,交换因数的位置积不变,归纳出乘法交换律。 三、要把培养学生的推理能力贯穿在日常的数学教学中 能力的发展决不等同于知识技能的获得。知识可以用“懂”来描述,技能可以用“会”来描述,都可以立竿见影。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。这种“悟”只有在数学活动中才能得以进行,因此教学活动必须给学生提供探索交流的空间,组织、引导学生经历观察、实验、猜想、验证等数学活动过程,并把推理能力的培养有机地结合在这一过程中。例如;在讲《分数的初步认识》这一课时时,学生在认识了二分之一,三分之一,四分之一……这些分数后,提出问题:二分之一和三分之一哪个分数大?先让学生说出自己的的猜想,接着验证:取两张相同的纸片,一个折出二分之一,另一个折出三分之一,再比较大小,一目了然,二分之一大于三分之一。接着再推理三分之一和四分之一哪个分数大?从而得出结论:分子为一的分数,分母小的分数大。这样再完成教学任务的同时,不知不觉中培养了学生的推理能力。 四、要把推理能力的培养植根于学生熟悉的生活实践中 要想促进学生推理能力更好地发展,除了书本知识外,还有很多活动能有效地发展学生的推理能力,例如: 大树与影子有什么关系,成什么比例,计算糖水里含糖量可能用什么比例解答,在解答之前,要用变化规律进行猜想,得到合情推理,再进行验证。 用举反例的方式证明结论不成立,如给小明家打电话,若多次接通但无人接听,则由此得出“小明不在家”的判断。 开展一些有趣的游戏或活动,培养学生的推理能力,如分圆比赛,就能得出“圆的周长与∏有关系”这一结论。 五、把推理能力的培养落实到《数学课程标准》的四个内容领域之中 “数与代数”、“空间与图形”、“统计与概率”、“实践与综合运用”这四个领域的内容都为发展学生的推理能力提供了很好的平台。 1、在“数与代数”中培养学生的推理能力 在“数与代数”的教学中.计算要依据一定的“规则”公式、法则、推理律等.因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:学习20以内进位加法时,让学生自主探索8+7=?,孩子们想出很多方法算出得数
㈣ 小学数学加减法运算法则中0-1二
0-1=-1
========================================
柳浪闻莺各位芝麻竭诚为您解答
您的采纳是我们内坚持网络容的动力
========================================
㈤ 小学数学教学中“100以内不进位加法”运算法则的引入方式有哪些
游戏引入,趣味情景
㈥ 小学六年级整理复习的数学定律
1 (1)“每相邻的两个计数单位之间的进率都为十”的计数法则 个/十/百/千/万/十万/百万/千万/亿/十亿/百亿/千亿/万亿/兆/十分之一
(2)先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大那个数就大。
(3) 分数的性质:分子和分母同时扩大或缩小相同的倍数,分数值不变
小数的基本性质:小数末尾添上0或者去掉0,小数的大小不变
关系:小数和分数只是一种从属关系,它们的性质也有相同的关系。
(4)往前一个数,这个数比原来小了10倍,往前两个,小了100倍,三个小了1000倍......往后一个,扩大10倍,两个100倍,3个1000倍......
(5)因数的含义: 除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数是被除数的因数.
倍数的含义:<1> 一个数能够被另一数整除,这个数就是另一数的倍数
<2>一个数除以另一数所得的商
<3>一个因数能让他的积整除,那么,这个数就是因数,他的积就是倍数
质数的含义:一个数,如果只有1和它本身两个因数,这样的数叫做质数
合数的含义:一个数如果除了一和他本身还有别的因数,这样的数叫合数。
2(1)加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 乘法结合律:a*b*c=a*(b*c) 乘法交换律:a*b=b*a 乘法分配律:a*(b+c)=a*b+a*c
(2)相同点:先乘除,后加减,有括号要先算括号里面的.
不同点:整数直接加减乘除。分数是分母相乘,分子相乘,加减则是把分母化成一样分子相加减。小数乘除与整数一样,最后加小数点。加减则是整加整。小数加减小数。
3.式:
方程:带有未知数的等式是方程
解方程:解方程就是一个过程,算出未知数的值或者范围
4。学过的量 计量单位
长度 千米,米,分米,厘米,毫米
面积 平方千米,公顷,平方米,平方分米,平方厘米
体积 立方米,立方分米,立方厘米,升,毫升
质量 吨,千克
时间 世纪,年,月,日,时,分,秒
换算 :你应该会
5 (!)比和分数、除法的关系:比的前项相当于除法的被除数相当于分数的分子;比的后项相当于除法的除数相当于分数的分母;比的比号相当于除法的除号相当于分数的分数线;比的比值相当于分数的分数值相当于除法的商。
比的基本性质:比的前项和后项都乘以或除以一个不为零的数,比值不变。
(2)比例的基本性质:在比例里,两个外项的乘积等于两个内项的乘积(比例的性质用于解比例)
用途:在工业画图 建筑图纸上缩小的比例 等
(3)正比例 两种相关联的量,一种量随着另一种量的变化而变化 相对应的两个量的比值(商)一定 (一 定)
反比例 两种相关联的量,一 种量随着另一种量的变化而变化。 相对应的两个量的积一定
联系:两种量都是相关联的量,一种量变化,另一种量也随着变化
区别:不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定. 两种量成反比例是一种量扩大,另一种量反而缩小一种量缩小,另一种量反而扩大,它们变化的规律是这两种量中,相对应的两个数积不变(一定).
判断:详见【区别】
6
1.直线:没有端点,2边可无限延长
射线:有1端有端点,另一端可无限延长
线段:有2个端点,而2个端点间的距离就是这条线段的长度
关系:平行 或者相交 (还有重合 不知道小学考不考虑)
2.锐角 0<x<90
直角 x=90
钝角 90<x<180
周角 180 (不知道小学是否涉及)
角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小。和两边的长短无关。
3.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形
四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的平面图形
圆的特点:是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上,也就是说圆上的点没有一点到圆心的距离不相等。
2 平移变换 旋转变换 轴对称变换 中心对称变换( 不知道小学是否涉及)
3(1)扇形统计图:特别意义:用一个圆的面积来表示总数用圆内扇形的大小来表示占总数的百分比
作用:可以清楚地表示出各个部分与总体的关系
条形统计图:特别意义:用一个单位长度表示一定的数量用直条的长短来表示数量的多少
作用:用于表示各个数量的多少对比鲜明
折线统计图:特别意义:用一个单位长度表示一定的数量用折线得上升或下降表示数量的多少和增减变化情况
作用:即可表示各种数量的多少又可反映出数量的增减变化趋势
(2)平均数:一组数据,用这组数据的总和除以总分数,得出的数
作用:平均数的大小与一组数据里的每个数据都有关系,任何一个数据的变动都会引起平均数的变动,即平均数受较大数和较小数的影响。
中位数:将一组数据按大小依次排列,把处在最中间位置的一个数
作用:当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
众数:在一组数据中出现次数最多的数据
作用:当一组数据中有不少数据多次重复出现时,它的众数也往往是我们关心的一种集中趋势。
(3)必然事件:100% 即一定会发生的事件
不确定事件:x% 即在主观或客观条件下都不能确定是否会发生的事件 (0<x<100)
不可能事件:0% 即在逻辑思维下不会发生的事件
四
平衡 即为找重心
㈦ 暴走漫画《小学生生存法则》中的那首歌是什么
自创的。。。
㈧ 小孩因调皮在学校上课不好好上课等,老师就罚每天抄写十遍的小学生遵守法则中的六条,直到能改掉这六条的
如果那个老师知道孩子有多动症那就不对,如果不知也情有可原
㈨ 小学数学教材中的所有意义、法则、性质的概念的文字描述谁知道
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
㈩ 小学数学思想方法培养
1.符号思想。数学课程标准要求,在小学阶段要培养和发展学生的符号感,我们知道,运用一套合适的符号,可以清晰、准确、简洁地表达数学思想、概念、方法和法则,避免日常语言的繁复、冗长或含混不清,从而简化数学运算或推理过程,加快数学思维的速度,促进数学思想的交流。如讲到乘法的诸多运算律时,就把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆、便于运用。
2.数形结合思想方法。数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。如诸多的行程问题,我们就可以用线段图来清楚的让学生直接感知到总路程、已行路程和剩下路程之间的关系;再如分数应用题的解答,用圆形图或者线段图表示整体与部分的关系,让学生的解答问题是一目了然,显而易懂,对学生的思维和想象能力大有提高。
3.分类思想方法。分类思想也是对小学生培养的一种重要思想方法。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系培养着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。
4.集合思想方法。现代的课堂教学,不仅仅要向学生传授知识,更为重要的是要把含在教材中的集合思想有意识地对学生进行培养,这样有利于培养学生的抽象概括能力,有利于提高学生分析和解决问题的能力。如:教学分类把某些具有共同属性的动物、植物和几何图形等分别用一个“圈”(封闭曲线)圈起来成为一个整体,这个整体就是集合。在教学求8和12的最大公约数时,可以制作课件或幻灯片,让学生从图中可以清楚直观地知道8和12的公约数是1、2和4,最大公约数是4,这样孕伏了交集的思想。