导航:首页 > 小学全识 > 小学图形知识

小学图形知识

发布时间:2020-12-21 14:18:32

① 小学阶段学过的几何图形相关知识是哪些

轴对称图形:如果一个图形沿着一条直线对折,直线左右的两部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线叫做对称轴。长方形(2条对称轴),正方形(4条对称轴),等腰三角形(1),等边三角形(3),等腰直角三角形(1),等腰梯形(1),圆(无数条对称轴)等到,都是对称图形。

中心对称图形:如果一个图形绕着一个定点旋转180度后,能够与原来的图形本身重合,这个图形就叫做中心对称图形。这点就是它的对称中心。如平形四边形就是中心对称图形。

点: 线和线相交于点。

直线: 某点在空间中或平面上沿着一定方向和相反方向运动,所画成的图形,叫做直线。直线是向相反方向无限延伸的,所以它没有端点,不可以度量。 (可以用表示直线上任意两点的大写字母来记:直线AB,也可以用一个小写字母来表示:直线a)

射线:由一个定点出发,向沿着一定的方向运动的点的轨迹,叫做射线。这个定点叫做射线的端点,这个端点也叫原点。射线只有一个端点,可以向一端无限延长。不可以度量。(射线可以用表示他端点,和射线上任意一点的两个大写字母表示:射线OA)

线段:直线上任意两点间的部分,叫做线段。这两点叫做线段的端点,线段有长度,可以度量。(线段可以用两个端点的大写字母表示:线段AB,也可以用一个小写字母表示;线段a)

线段的性质:在连接两点的所有线中,线段最短。

角:从一点引出两条射线所组成的图形,叫做角。这两条射线的公共端点,叫做角的顶点。组成角的两条射线,叫做角的边。 角的大小与夹角两边的长短无关。

角的分类:

直角:90度的角叫做直角

平角:一条射线由原来的位置,绕它的端点按逆时针方向旋转,到所成的角的终边和始边成一直为止,这时所成的角叫做平角。或者角的两边的方向相反,且同在一条直线上时的角叫做平角,平角是180度。

锐角:小于90度的角叫做锐角

钝角:大于90度的角叫做钝角

周角:一条射线由原来的位置,绕它的端点,按逆时针方向旋转,到所成的角的终边和始边重合,这时所成的角叫做周角。周角是360度。

1周角=2平角 1平角=2直角

垂直与平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

点到直线的距离:从直线外一点作这条直线的垂线,这点和垂足之间的线段长度,叫做点到直线的距离。从直线外一点到这条直线所画的垂线段最短。

平行线间的距离:从一条直线上的一点向它的平行线作一条垂线,这点到垂足之间的线段的长度,叫做平行线间的距离。平行线间的距离处处相等。即,平行线间的垂线的长度都相等。

三角形:由三条线段围成的图形(每相邻两条线段的的端点相连)叫做三角形。从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。三角形具有稳定性。

三角形的高:任意三角形的三条高都相交于一点。

三角形边的性质:1、三角形任何两边的长度和大于第三边。

2、三角形的任何两边的差小于第三边。

三角形角三个内角的度数和叫做三角形的内角和。三角形的内角和是180度。

三角形的分类:1、按边分:

三条边都不相等的三角形,叫不等边三角形;

三条边中有两条边相等的三角形,叫等腰三角形。

三条边都相等的三角形,叫做等边三角形,也叫正三角形。

2、按角分:

三个角都是锐角的三角形,叫做锐角三角形。

有一个角是直角的三角形,叫做直角三角形。

有一个角是钝角的三角形,叫做钝角三角形。(锐角三角形和钝角三角形合称为斜三角形。

三角形的面积:三角形的面积=底×高÷2 通常用S表示三角形的面积,用a表示底,用h表示高。那么:S=ah÷2 或 S=1/2ah

长方形:对边相等,四个角都是直角的四边形,叫做长方形。长方形的长边叫做长方形的长,短边叫做长方形的宽。长方形的对边相等,并且四个角都是直角;对角线长度相等,又互相平行分。

周长:图形一周的长度就是图形的周长。

长方形的周长:长方形的周长=(长+宽)×2 通常用C表示周长,a表示长,b表示宽,那么C=(a+b)×2

长方形的面积:长方形的面积=长×宽 字母公式:S=a×b

正方形:长和宽相等的长方形,叫做正方形。正方形的每条边都叫做边长。正方形的四条边的长度都相等,四个角都是直角。正方形又是特殊的长方形。对角线的长度相等,又互相垂直且平分。

正方形的周长:正方形的周长=边长×4 字母公式:C=4a

正方形的面积:正方形的面积=边长×边长 字母公式:S=a×a或S=a的平方

平行四边形:两组对边分别平行的四边形,叫做平行四边形。平行四边行对边相等,对角相等

平行四边形的任意一组对边间的距离,叫做平行四边形的高,和高垂直的一边,叫做平行四边行的底。

平行四边形的面积:平行四边形的面积=底×高 用字母表示:S=a×h

菱形:有一组邻边相等的平行四边形,叫做菱形。菱形的四条边都相等,对角相等。

梯形:只有一组对边平行的四边形,叫做梯形。在梯形中,互相平行的一组对边,分别叫做梯形的上底和下底。不平行的一组对边,叫做梯形的腰。梯形的两底之间的距离,叫做梯形的高。

等腰梯形:两腰相等的梯形,叫做等腰梯形。

直角梯形:一条腰垂直于底的梯形,叫做直角梯形。

梯形的叫位线:梯形两腰中点的连线,叫做梯形的中位线。梯形中位线平行于上、下底,并且等于两底和的一半。

梯形的面积:梯形的面积=(上底+下底)×高÷2 梯形的面积=中位线×高,用a表示上底,b表示下底,m表示中位线,h表示高。那么, 用字母表示:S=1/2(a+b)h 或 S=mh

圆:在平面上,以一个定点为中心,以一定长度为距离而运动一周形成的轨迹,叫做圆周,简称圆。这个定点叫做圆心,圆心通常用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心,并且两端都在圆上的线段叫做直径。一般用字母d表示。

圆的性质:在同一个圆内,,所有的半径都相等,所有的直径都相等;直径等于半径的2倍

圆周率:圆的周长与这个圆的直径长度的比,叫做圆周率。圆周率是一个固定的值,用希腊字母“π”表示。它是一个无限不循环小数,但在实际应用中,一般取它的近似值,即π=3.14.

约在2000年前中国的古代数学著作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是它直径的3倍。约1500年前,中国有一位伟大的数学家和天文学家祖冲之,他计算出圆周率应在:3.1415926和3. 1415927之间,成为世界上第一个把圆周率值精确到7位小数的人。他的这项伟大成就比国外数学家得出这样精确的数值的时间,至少要早1000年。现在人们用计算机算出的圆周率,小数点后面已经达到上亿位。

圆的周长:圆的周长=圆周率×直径 用字母示:C=πd 或 C=2πr

圆的面积:圆的面积=圆周率×半径的平方 字母公式:S=πr的平方

环形的面积:即圆环。两个半径不相等的同心圆的圆周之间所夹的平面部分,叫做环形。面积等于外圆的面积减去内圆的面积。

扇形:由圆心角和圆心角所对的弧围成的图形,叫做扇形。

扇形面积:扇形面积等于所在圆的面积除以360,再乘以圆心角的度数值。用n表示圆心角的度数,那么:S=πr的平方/360×n。

体积:物体的占空间的大小,叫做物体的体积。

容积:容器所能容纳物质的体积的大小,叫做容器的容积。

长方体:长方体是由6个长方形(特殊情况也有两个相对的面是正方形)围成的立体图形。在一个长方体中,有6个面,12条棱,8个顶点,相对的面完全相同,相对的棱长度相等。

相交于一个顶点的三条棱的长度分别叫做长方形的找,宽,高。

长方体的表面积:长方体6个面的面积总和叫做它的表面积。长方体表面积=(长×高+长×宽+宽×高)×2

长方体的体积:长方体的体积=长×宽×高 或 长方体的体积=底面×积高 通常用V表示体积,a表示长,b表示宽,h表示高,S表示底面积。那么,V=abh 或 V=sh

正方体:长、宽、高都相等的长方体,叫做正方体(也叫立方体)。正方体六个面都是正方形,12条棱长度都相等,6个面的面积都相等。正方体是特殊的长方体。

正方体的表面积:正方体的表面积=棱长×棱长×6

正方体的体积:正方形的体积=棱长×棱长×棱长 字母公式 V=a ×a×a或 V=a的立方

土石方:也叫做方,1立方米就是1方。这是修农田水利,筑堤坝,挖沟渠,修筑公路,建筑房屋等工程,常驻以土石方计算所需要的沙,石,土的体积,通常用方做单位。

圆柱:用长方形的一边作轴,并旋转360度,所得的几何体,叫做圆柱,简称圆柱。圆柱的上下两个面是相等的圆,叫做圆柱的底面;两个底面之间的距离叫做圆柱的高;曲面部分称为侧面。圆柱的侧面展开是一个长方形(或正方形)长就是圆柱的底面周长,宽就是圆柱的高。

圆柱的表面积:圆柱的表面积=2底面积×底面周长×高

圆柱的体积:圆柱的体积=底面积×高 字母公式 V=sh

圆锥:用直角三角形的一条直角边为轴,把它旋转360度,所得的几何体,叫做直圆锥,简称圆锥。圆锥的底面是圆形;圆锥的顶点到底面的距离,叫做圆锥的高;圆锥顶点到底面圆周上任意一点的距离,叫圆锥的母线。

圆锥的体积:圆锥的体积=1/3底面积×高 字母公式 V=1/3sh

② 图形与几何知识点整理

A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
3、相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:
1、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。
D、证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

③ 小学图形题请大神用小学知识解答,谢谢!

阴影部分面积是两正方形面积的差,环形面积为两个圆的面积差。假设正方形边长为a和b,则两个圆的半径就是a/2和b/2

④ 图形与几何知识点整理。

图形于几何包含:图形的认识,图形的运动,测量,图形与位置。

图形是指在二维空间中以内轮廓为界限的空间碎片,在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分,不具有空间的延展性,它是局限的可识别的形状。图容形区别于标记、标志与图案,它既不是一种单纯的符号,更不是单一以审美为目的的一种装饰,而是在特定的思想意识支配下的某一个或多个视觉元素组合的一种蓄意的刻画和表达形式。

⑤ 小学所有几何图形的认识知识整理

(一)空间与图形-图形的认识与测量
这部分需要着重复习:
①小学阶段所学习的“五线”、“五角”、“七形”、“四体”的认识和特征;
②测量和测量单位的有关知识,平面图形的周长和面积、立体图形的表面积和体积;
③观察物体的相关知识。
(二)空间与图形-图形的位置与变换
这部分需要着重复习:
①轴对称图形、平移、旋转三种基本的几何变换;
②确定位置的几种方法。方向与位置的要点是方向角度(特别是谁偏谁多少度)和距离、数对、线路图和比例尺的相关知识。
③掌握作图操作,利用比例的知识计算面积等知识。
一、平面图形
(一)“五线”——线段、射线、直线、垂线、平行线。
过一点可以画出无数条射线。过一点可以画出无数直线。过两点只能画出一条直线。
(二)“五角”——锐角、直角、钝角、平角、周角。
1、角的定义:从一点引出两条射线,所组成的图形叫做角。
①这个点叫做角的顶点,这两条射线叫做角的边;
②角的大小与角的两边叉开的大小有关、角的大小与所画角的边的长短无关;
③角用“ ∠”表示;
④计量角的大小单位是“度”,用“ °”表示。
2、角的分类
锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
3、画角和量角
如果让我们任意画一个角,用直尺就可以了;要画一个指定度数的角就必须用量角器画。
①先画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合;
②在量角器所画角刻度线的地方点一点;
③以射线的端点为端点,通过刚画的点,再画一条射线。
(三)“七形”——三角形、长方形、正方形、平行四边形、梯形、圆、扇形。

⑥ 小学所有几何图形的认识知识整理

平面图形:长方形,正方形,三角形,平行四边形,梯形,园。立体图形:长方体、正方体、圆柱和圆锥。
长方形正方形的特征,长方形正方形的周长、面积的计算。
平行四边形的特征,平行四边形面积的计算。
三角形的特征,面积的计算,面积计算公式的推导过程。
梯形面积计算公式的推导及计算。
园的特征,面积计算公式的推导及其计算。
长方体正方体的特征,表面积,体积的计算公式及其计算。以及有关棱长的计算。
圆柱的特征,圆柱的表面积,底面积,侧面积,体积的计算及其公式推导。
圆锥的特征,圆锥只要求计算体积。

⑦ 小学图形与几何复习人教版知识点(教材全解)

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升


平面图形【认识、周长、面积】

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程

小学数学图形与测量知识点

(一)长方形

1、特征:六个面都是长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。 有8个顶点。 相交于一个顶点的三条棱的长度分别叫做长、宽、高。 两个面相交的边叫做棱。
三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。

2、计算公式
s=2(ab+ah+bh) V=sh V=abh

(二)正方体

1、特征:六个面都是正方形
六个面的面积相等 12条棱,棱长都相等 有8个顶点

正方体可以看作特殊的长方体

2、计算公式 S表=6a??
v=a??

(三)圆柱

1、圆柱的认识 圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。 圆柱两个底面之间的距离叫做高 。

进一法:实际中,使用的材料都要比计算的结果多一些
,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

2、计算公式 s侧=ch
s表=s侧+s底×2
v=sh/3

(四)圆锥

圆锥的认识

圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。
2计算公式 v= sh/3

(五)球

1、认识
球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,
直径的长度等于半径的2倍,即d=2r。

2 计算公式 d=2r

⑨ 一年级小学生应该怎样教学图形与几何知识

安全知识
用火安全知识
、液化石油气灶具能放卧室、办公室、阳台或仓库、礼堂等公共场所内防漏气失火
二、确掌握关使用要火等气要气等火用毕切记关阀门、关阀门坏要及更换要让童使用灶具或随意玩弄关
三、使用液化气要看管远离随注意调节火防止汤水外溢浇灭焰或风吹灭火焰引起跑气
四、液化气罐应直立能倒放更能用水泡或火烤
五.发现气漏应立即采取措施:打门窗用扇煽便通风换气(能用电扇吹)查找漏气部位
灭火基本知识
(1)隔离:种消除燃物
(2)窒息:阻止空气流入燃烧区减少空气氧气含量使火源足够氧气熄灭
(3)冷却:用水或其灭火剂喷射燃烧物燃烧物温度降低燃点迫使物质燃烧停止;或水灭火剂喷洒火源附近燃物降低燃物温度避免火情扩
(4)抑制

希望能帮

阅读全文

与小学图形知识相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99