1. 求小学数学应用题公式
1、和差问题,已知两个数的和及这两个数的差,求这两个数。
(和+差)÷2=大数,(和-差)÷2=小数。
2、和倍问题,已知两个数的和及这两个数的倍数关系,求这两个数。
和÷(倍数+1)=1倍数(或小数),小数×倍数=大数,和-小数=大数。
3、差倍问题,已知两个数的差及这两个数的倍数关系,求这两个数。
差÷(倍数-1)=小数,小数+差=大数。
4、过桥问题,从车头上桥,到车尾离开桥,求所用的时间。
路程=桥长+列车长度。
5、流水问题,求船在流水中航行的时间。
船速+水速=顺流速度,船速-水速=逆流速度。
6、线上植树问题,求植树的株数。
在封闭的线上植树。
路长=株距×株数,株距=路长÷株数,株数=路长÷株距。
在不封闭的线上植树,两端都植树。
路长=株距×(株数-1),株距=路长÷(株数-1),株数=路长÷株距+1。
7、面上植树问题,求植树的株数。
当长方形土地的长、宽分别能被株距、行距整除时。
行距×株距=每株植物的占地面积,土地面积÷每株植物的占地面积=株数。
当长方形土地的长、宽不能被株距、行距整除时。
可以按线上植树问题解题。
8、盈亏问题,求分配的人数。
剩余物品的个数差÷分配方法的个数差=分配的人数。
9、年龄问题,求两人的年龄。
大人年龄-小孩年龄=年龄差。10、鸡兔问题,已知鸡兔的总头数和总腿数,求鸡兔只数。
兔子只数=(总腿数-总头数×2)÷2,鸡的只数=(总头数×4-总腿数)÷2。
11、时钟问题,求时针和分针重合、成直线或直角的时间。
两针重合时间=两针间隔格数÷11/12。
两针成直线时间=(两针间隔格数±30)÷11/12。
两针成直角时间=(两针间隔格数±15或45)÷11/12。
12、归一问题,先求出单一数量,再求出其他数量。
13、归总问题,先求出总数量,再求出其他数量。
14、时间差问题,计算几月几日到几月几日的时间差。
先计算首月和尾月,再计算中间几个月。
15、预测星期几问题,已知今天是星期几,计算经过多少天是星期几。
用经过的天数除以7,求出剩余的天数,再计算是星期几。
2. 小学数学应用题有哪六个要点
常用应用题解题方法
掌握解题步骤是解答应用题的第一步,要想掌握解答应用题的技能技巧,还需要掌握解答应用题的基本方法。一般可以分为综合法、分析法、图解法、演示法、消元法、假定法、逆推法、列举法等。在这里介绍这些方法,主要是帮助同学掌握在遇到应用题时,如何去思考,怎样打开自己的智慧之门。这些方法都不是孤立的,在实际解题中,往往是两种或三种方法同时用到,而且有许多问题,可以用这种方法分析,也可以用那种方法分析。问题在于掌握了各种方法后,可以随着题目中的数量关系灵活运用,切不可死记硬背,机械地套用解题方法。 1.综合法
从已知条件出发,根据数量关系先选择两个已知数量,提出可以解答的问题,然后把所求出的数量作为新的已知条件, 与其它的已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出所要求的结果为止。这就是综合法。在运用综合法的过程中,把应用题的已知条件分解成可以依次解答的几个简单应用题。小学数学网
例1.一个养鸡场一月份运出肉鸡13600只,二月份运出的肉鸡是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出多少只?
综合法的思路是:
算式:(13600+13600×2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份运出40000只。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工厂有一堆煤,原计划每天烧3吨,可以烧96天。由于改进烧煤方法,每天可节煤0.6吨,这样可以比原计划多烧几天?
解答这道题,综合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原计划多烧24天
3. 各种小学数学应用题公式
、【和差问题公式】(和+差)÷2=较大数;
(和-差)÷2=较小数。
2、【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或和-一倍数=另一数。
3、【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数。
4、【平均数问题公式】
总数量÷总份数=平均数。
5、【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
6、【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
9、【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
11、【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
(摘来的,供参考)
4. 关于小学数学应用题全部的计算公式 及方法
首先是一些面积的基本计算公式,如:圆的计算公式(面积、周长)长方形的计算公式(面积、周长)正方形、长方体、正方体、圆柱体等其他图形的计算公式。
其次,就是列方程,每次遇到不会的应用题都推荐用方程的形式来解决,这是最为简单的回答方法。其中,列方程的方法也分为好几种:1、顺着题目的意思走 2、根据题目的意思来列出等量关系(建议设单倍数为X,比较方便) 3、根据图形的计算公式来列方程 4、在一句话中,把“比”字看作一个“=”,把“是”字也看作一个“=”。 5、(关于行程问题中的相遇问题)总量=慢者先行路程+快者路程+慢者路程 6、(关于工作问题)工作效率*工作时间=工作总量 7、(关于行程问题中的相遇问题)一半路程=另一半路程 8、寻找一个不变量:总量=总量 9、(关于变化问题)三步曲:1、看始时两个物体的量 2、变化的过程 3、结果
接下来,就是一些简单的分数应用题了,建议牢记分数的四则运算,和结尾能化简就化简的原则,下面是一些简短的例子,便于理解:
加法:2/3+6/3
=6/9+6/3
=6/12
=1/2
减法:6/6-6/3
=6/(6-3)
=6/3
=2/1
乘法:6/5*6/6
=6*6/6*5
=36/30
=6/5
除法:(等于乘另一个数的倒数)6/6/5/6
=6*6/6*5
=36/30
=6/5
帮我加点¥吧,这年头出来混不容易呀!囧囧囧谢谢!!
5. 中小学数学应用题常用公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b:宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)