导航:首页 > 小学全识 > 小学立体图形知识点

小学立体图形知识点

发布时间:2020-11-24 14:16:27

⑴ 立体图形知识结构图怎么画,需要样板图

先话正面投影图,再画侧面投影图,再画俯视图,三视图出来后,立体图也就相应出来了,给个简单例子如图

⑵ 小学奥数常考的十大类型题,包括公式

小学奥数常考的知识板块有这几类:计算、计数、数论、几何、应用、行程、分数、杂题。
计算:考察的是计算规律与计算方法的运用,乘法的分配律是考的比较多的,注意观察算式中相同或者相关的数,常用的方法有:凑整、分组、约分、裂项、换元等,较难的还有繁分数等。

计数:这个版块一般和其他的知识点结合考察,如图形的计数,和数论的结合也比较多,重要的思想就是分类,注意不重复,不遗漏。

数论:数论是小学奥数的重点和难点,考察了我们对因数与倍数、计数与偶数、质数与合数、分解质因数、最大公因数与最小公倍数、有余数的除法、同余等知识点,这个知识点中需要记忆的东西比较多,需要同学下工夫。

几何:平面图形与立体图形。
平面图形:直线型与曲线形图形的周长与面积,奥数中考的最多的是图形的面积。一般是组合图形的面积或不规则图形的面积,常用的思想:相加减、割补法、旋转、等积变形。
立体图形:考察的是立体图形的体积与表面积、立体图形的切割、立体图形的染色计数等。

应用:应用题中的知识点比较多,考的较多的是:和差、和倍、差倍、年龄、盈亏、平均数、鸡兔同笼、牛吃草、工程、行程等,总之应用题需要同学努力去一个个攻克。

行程:虽然行程是应用题的一种,但是因为其重要性,我们单独把它当做一个大类。
行程基本类型:相遇与追及。
特殊类型:流水行船、火车过桥、环形跑道、多次相遇等。
做好行程图是解决行程问题的关键,注意抓住变化过程中的不变量,我们到了6年级通常引入比例的思想来解行程问题。有时候我们也会用盈亏问题的思想和牛吃草问题的思想来帮助我们解决行程问题。

分数:这个在奥数中所占的分数比重非常大。分数的计算和应用题都是奥数中的重要考点。
分数应用题中注意:①找不变量 ②把不变量看作单位1 ③找已知量对应的分率
一定要注意统一单位1。
分数应用题与百分数应用题重要知识点:工程问题、利润问题、浓度问题。

杂题:比较重要的杂题有:抽屉原理、最值问题、容斥原理、统筹、最优方案等。

小学奥数要注意及时的归纳与总结,比如说思考方法与解题方法:假设法、还原法、比较法、作图法,一个知识点学习了,一般的等量关系是什么,常用的方法是什么,怎么样找题目的突破口等。 有问题欢迎和我联系,都是手打,望采纳!

⑶ 立体图形的认识及体积,表面积计算的答案

立体图形的认识 表面积和体积
[ 2008-3-8 21:11:00 | By: yuey ]

《立体图形的认识、表面积和体积》

——复习课教学设计

教学内容:人教版六年制小学数学第十二册P131—132页内容。

教学目标:

1、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养学生归纳、总结等自我复习能力及团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

3、知识目标:(1)使学生进一步认识学过的一些立体图形特征,掌握不同立体图形之间的异同。(2)通过复习使学生能够灵活运用所学过的立体图形特征解决简单的实际问题,进一步发展学生的空间观念。

教学重点:通过复习使学生能够灵活运用所学过的立体图形特征解决简单的实际问题,进一步发展学生的空间观念。

教学难点:进一步发展学生的空间观念。

设计思路:

担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,传统的复习课让习题一道道呈现,让学生仅仅停滞在“会”的目标上,这复习课究竟应该如何去上好,应该如何让学生感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,学生自己组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为学生的组织者,引导者和合作者,而不是课堂上的“权威”?本着“体现新理念,用活教材,练活习题,激活课堂”的思想,针对本节课的教学目标,我采用让学生分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让学生在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。

课前准备:

1、把学生分成四大组,让学生给自己组取名(如精灵队、快乐队等),把立体图形的认识分成“长方体”、“正方体”、“圆柱、“圆锥”四大块,让每一组抽签确定本组的一个研究主题,然后分组研究本部分的知识包含哪些我们需要掌握的内容,有哪些重点和难点,最后拟定五个问题。要求这五个问题反映本组全体同学的水平,它们要能基本概括你们所研究主题的全部内容以及重点难点,而且为了本组能取得好成绩,提出的问题要有价值,要有一定的思考性。然后依次向其它小组提问,请他们作答。

2、每一小组有一信封,信封内装有立体图形名称、图片和一张白纸。

【设计意图:小学生喜欢争强好胜,在学习活动中设置一定的障碍,引入竞争机制,犹如给学习活动加入了催化剂,能激活学生的思维,使学生乐于合作,勇于探索,避免常规复习课的枯燥乏味,但这节课的课前准备必须是充分的,要求必须明确,这样的课前准备其实是调动了学生自主复习的积极性,从而使学习活动在上课前就已热烈地展开了。】

教学过程:

一、谈话激趣:

同学们,你们喜欢看电视里的娱乐节目吗?比如快乐大本营、夺标800、智力大冲浪啊?今天我们来玩一玩《开心四十分》,愿意吗?

二、展开活动,自主复习

1、师:今天的活动我们有个主题,出示:立体图形的认识。为了在这次活动中玩出水平,赛出成绩,我们各小组都进行了认真的复习,在提问和被提问方面都做好了充分的准备。你们有信心夺取冠军吗?老师预祝你们问得巧妙,答得精彩!

2、多媒体宣布比赛规则:

A、提问的一组如果其他小组回答正确,则答题的一组得两颗星,提问的一组得一颗星作为优秀设问奖。

B、如果被提问的那个同学回答不出,可以向本组同学求援,求援机会只有一次,如果本组同学能正确答出,则加一颗星,如回答不出,则失去答题机会,由其他小组回答,答出则加一颗星。如果没人能够回答,则设问小组公布答案,如果答案正确并有创意,加一颗星为优秀设问奖,如果出题有误,则倒扣一颗星。

3、学生活动开始。

每组有发言人指名向其他组提问,依次轮流进行。

(教师充当调解员和记分员,并投影公布小组成绩,以鼓励学生的积极性,并进行小结。)

【设计意图:在课前学生已经分小组充分地合作复习研讨的基础上,学生的竞争意识早已让他们盼望着课的开始,教师以主持人的身份调控比赛的时间、顺序,以协作者的热情感染整个课堂的气氛,使复习的内容在学生的答辩中明了、清晰,而且由于学生想难住对方,想出的问题一定是他们认为其他组不易答出的问题,或许本就是他们心中的疑惑之处,于是,在争论中也解决了学生想要解决的问题。】

4、学生提问结束:

(1)师述:好,现在老师这儿还有一个加星题,得星少的小组还有反败为胜的可能哦!请听题:哪个小组能把刚才全班同学分组复习的四部分知识有机联系起来?联系得好,再加两颗星。

(2)小组合作,把我们学过的立体图形这部分知识用自己喜欢的方式整理成框架图。

(3)展示学生成果,让学生说出如此整理的理由。

【设计意图:复习课重在对知识结构的系统整理,采用“加星”的形式让学生主动建构知识网络,把所学知识系统化、条理化,用自己喜欢的方式能激起学生的创新意识,展示成果又让学生们能互补互学,达到最优化。】

5、教师小结:今天的比赛第**小组团结协作,发挥出色,比其他小组略胜一筹,荣获冠军,老师为你们祝贺!但老师觉得另外三组不甘示弱,积极参与,主动学习,同样值得老师喝彩!你们这样的讨论和竞争,让老师和你们大家一起对比和比例这部分知识认识更有条理,印象也更深刻了。

【设计意图:适当的总结和鼓励为学生的学习活动作了较好的评价,学生从教师赏识的话语中体验到合作学习的成就感,能以更加积极的心态和饱满的情绪迎接更大的学习挑战。】

三、基本练习,适时巩固

师:现在老师这儿有一些数学问题,你们想用你们刚才复习的知识来解决它们吗?

多媒体出示:

1、概念题

2、计算题

3、趣味生活题

【设计意图:巩固习题从最基本的开始然后逐步加深,尽量从生活中寻找题源,选择学生熟悉而喜欢的数学练习内容,让学生对数学学习有一种亲近感,培养学生解决实际问题的能力。】

⑷ 你知道哪些有关立体图形体积的相关知识

立体图形的体积公式: 1.长方体:
体积 =长×宽×高
2.正方体:
体积=棱长×棱长×棱长
3.圆柱体:
体积=底面积×高
4.圆锥体:
体积=底面积×高÷3
5.球:
体积=4×圆周率×半径³÷3

⑸ 图形与几何知识点整理

A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
3、相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:
1、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。
D、证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

⑹ 求关于初一数学几何图形的知识点

一、知识点回顾
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
圆柱(圆柱的侧面是曲面,底面是圆)

生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(棱柱的侧面是若干个小长方形构成,底面是多边形)
(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)
棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)

4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种

截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
8 三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。
9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

⑺ 立体图形的分类及识别,是初中数学知识点还是小学

小学只学习了长方体,正方体,圆柱体和圆锥体。认识了各自的特征以及表面积和体积的计算方法。其它的立体图形都是以后学习的。

⑻ 怎样整理平面图形和立体图形的有关知识

欢迎看看网络贴吧 动手动脑画立体

阅读全文

与小学立体图形知识点相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99