导航:首页 > 小学全识 > 小学5年级圆的知识点总结

小学5年级圆的知识点总结

发布时间:2020-12-18 08:04:57

『壹』 小学六年级上册人教版数学重要知识点

六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如 的分数可折成( )×
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
“1”× =
例如:求25的 是多少? 列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( “1” ) ×
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数±乙数× 即25±25× =25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,.
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= =周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径= ×2πr=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)
扇形面积 = πr2× (n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数 化 小数:分子除以分母。
二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八点五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半价
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(应纳税额)=(总收入)×(税率)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
8、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几
(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第六单元、统计
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
第七单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
头数 鸡(只)兔(只) 腿数
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔
(2) 假如都是鸡
(3) 假如它们各抬起一条腿
(4) 假如兔子抬起两条前腿
3、 用代数方法解(一般规律)
注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
二、和尚分馒头
100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?
国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
大小和尚各几丁?"
如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
方法一,用方程解:
解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,鸡兔同笼法:
(1)假设100人全是大和尚,应吃馒头多少个?
3×100=300(个).
(2)这样多吃了几个呢?
300-100=200(个).
(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?
3- = (个)
(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分组法:
由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。
这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:
100÷(3+1)=25(组)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我国古代劳动人民的智慧由此可见一斑。
三、整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?
180×56 =150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?
120÷35 =200(人)

请采纳,谢谢

『贰』 小学数学常用的教学方法有哪几种

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

『叁』 小学数学六年级下学期解比例0.4:X=1.2:2

第十一课时:比例的意义、性质和正反比例的意义

复习内容:
比例的意义、性质和正、反比例的意义。(课本第27页的整理和复习中的第1――3题,练习六中的第1――3题。)
复习目的:
1. 使学生进一步理解比例的意义和性质,进一步区别比和比例的意义。
2. 使学生进一步理解正、反比例的意义,能正确进行判断。
3. 通过复习提高学生思维能力。
教学重点、难点:
正反比例的判断。
复习过程
一、复习比、比例的概念
1、什么叫做比?什么叫比例?比和比例有什么区别?
2、小结。
二、复习解比例
1、什么叫解比例?解比例是解方程吗?解方程也是解比例吗?
2、解下面的比例:
5/X=10/3 4/21=0.4/X 2/3:5/9=X:6
1/3:1/20=17/9:X 12/25=5/X 5.5:X=3.25:8
3、小结 解比例方法和验算方法。
三、复习正、反比例的概念
1、什么叫做成正比例的量和正比例关系?什么叫做反比例的量和比例关系?
2、比较正、反比例的异同点。
指名回答,师板书如下:(填表)
不同点 相同点
意义 用字母表示 变化规律 有三种量,其中一种量是一定的,另外两种量,一种变化,另一种量也随着变化。
正比例 (略) Y/x=r(一定) 同扩同缩比值一定
反比例 (略) X×y=r(一定) 一扩一缩积一定
四、复习正、反比例量的判断
1、根据下表两种量中相对应的数的关系,判断它们成什么比例,并说明理由。
一本书,每天看的页数 4 6 12 32
所用的天数 24 16 8 3
三角形的底边(分米) 1 2 5 9
三角形的面积(平方分米) 2.5 5 12.5 22.5
2、小结
判断方法和步骤:“一想、二找、三判断”

3、判断下列关系中,两种变化的量成不成比例?如果成比例,成什么比例?
师小结:因为除法是乘法是逆运处,除数和商相当于乘法处式中的因数,所以判断成正比例还是反比例可以列成统一的乘法关系式,当积一定时,两个因数成反比例;当一个因数一定时,积与另一个因数成正比例。
五、课内外作业
完成练习六中的第1――3题。

第十二课时:比例应用题

复习内容:
比例应用题。(课本第27页的整理和复习的第4、5题,完成练习六中的第4――8题。)
复习目的:
通过正、反比例应用题的复习,使学生能正确、熟练地解答正、反比例应用题,提高解答应用题的能力。
复习重点、难点:
比例应用题的数量关系和解题方法。
复习过程
一、解题思路训练
一辆汽车从甲地开往乙地,3小时行了150千米,用同样的速度行驶,(1)又行了120千米到达乙地。根据以上条件判断哪两种量成什么比例?列出关系式。再出示150/3=( )/X,(1)如果X指又行的小时数,X应与谁对应?括号里应填什么数?(2)如果X指一共的小数,X应与谁对应?括号里应填什么数?
(2)一共行了5小时到达乙地。(1)出示150/3=X/5,问:如果这样列等式,X表示什么?(2)出示150/3=X/5-3,问这样列式,X表示什么?
二、复习正、反比例应用题
1、用比例解答下列应用题。
(1)安装一条下水管道,计划每天安装120米,15天完成,实际只用了10天就完成了。实际每天安装多少米?
(2)安装一条下水管道,15天安装了120米,照这样计算,10天能安装多少米?
全班练习,指名个别板演,后集体订正。
(1) 因为每天工作量×工作时间=工作总量(一定)

因为工作总量÷工作时间=每天工作量(一定)
所以工作总量和工作时间成正比例。
2、小结对比上面的第(1)、(2)题。
3、总结。
三、练习
1、整理和复习的第4、5题。
学生练习,指名板演,后评讲。
2、一题多解练习。
运一堆煤,计划每天运150吨,20天运。实际2天就运了400吨,照这样计算,实际几天运完?
3、深化练习。
练习六的第7题:这段铁路长一定,每天铺路长度与天数成反比例,把原计划每天铺的路看作“1”则实际每天铺的路为(1+25%)可列出反比例式。答案是15天。
第8题:可先求A、B分别是重叠部分面积的几倍,再列出比例式解答,答案是6平方厘米。
四、课内外作业。
完成练习六的第4、5、6题。

第二单元 圆柱、圆锥
单元教学计划
教材分析:
教材内容
本单元教材内容有:圆柱和圆锥的认识,圆柱的表面积、圆柱的体积和圆锥的体积,球的认识共三小节。这部分知识是在学生掌握了长方体、正方体和圆的有关知识的基础上进行教学的,是小学阶段学习几何知识的最后一部分内容。
圆柱这部分知识,教材通过直观手段,对常见的几何形体实物的观察,并从实物中抽象出圆柱体的特征,使学生的认识建立在直观形象的感知基础上,而后再通过学生动手操作,实验演示掌握它的特征。教学圆柱体的表面积的计算时,教材通过实验推出圆柱体表面积的计算方法,并通过实际生活例子,让学生解决一些问题,并介绍“进一法”。教材在教学圆柱体的体积时,通过拼的方法推异出圆柱体体积的计算公式。教材注意在理解的基础上,通过圆面积公式的推异方法引出圆柱体体积的计算公式。
本单元教材在教学圆锥的认识时,也是通过对常见的圆锥的观察,引异学生认识并掌握圆锥体的特征,通过制作一个圆锥,进一步巩固、深化。在教学圆锥的体积时,通过实验的方法,推异出圆锥体体积的计算公式。
本单元第三小节是球的认识。它是新的知识,也是选学内容。教材通过实际例子引异学生观察,认识球的形状和基本特征,再通过实际认识“球的直径都相等”,“直径的长度是半径的2倍”等。通过观察地球仪,让学生计算赤道的长度,初步了解球的一些实际应用。教学球的认识时,最好要利用直观手段进和教学。学好这部分知识为中学学习打下良好的基础。
本单元教材的重点是圆柱体体积的计算。教学量,要充分利用教具、电教媒体,通过反复演示、实验、操作,揭示公式推异的过程,展示知识间内在联系,让学生掌握计算公式,培养学生解决问题的能力。

教学重难点、关键:
1、重点:圆柱体体积的计算。
2、难点:(1)圆柱体体积计算公式的推导。
(2)解答有关圆柱体实物表面积的实际问题。
3、关键:充分运用直观教具,进行拼板演示和实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。

教学要求:
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解并掌握求圆柱的侧面积、表面积的计算方法,并能计算有关的实际问题。
3、使学生理解和掌握求圆柱、圆锥体积的计算公式,会运用公式计算它们的体积、容积;解决有关的简单实际问题。
4、通过学生自己动手操作、观察、比较、分析、判断推理,培养学生空间观念,提高空间想象能力和逻辑思维能力。
5、使学有余力的学生初步认识球,知道球的各部分名黍以及半径与直径的关系。

课时划分
1、圆柱…………………………………………………………………5课时
2、圆锥…………………………………………………………………3课时
3、球……………………………………………………………………1课时
4、整理和复习…………………………………………………………2课

第一课时:圆柱的认识

教学内容:
圆柱的认识、圆柱的特征、底面、直径、半径、高、侧面及展开图。
教学目的:
使学生认识圆柱,了解圆柱体各部分名称,掌握圆柱体的特征。
教学重点、难点:
理解并掌握圆柱体的特征。
教具准备:
圆柱体的实物、模型和投影片。
教学过程:
一、 导入新课
师出示名种实物和模型。问:这些形体中,哪些是我们已学过的?我们学过的正方体,长方体都是由平面围成的立体图形。今天开始我们再来研究一种立体圆形――圆柱。像这些物体的形状都是圆柱体,简称圆柱。
二、 新授
1、让学生举出日常生活见到的圆柱体。
2、认识圆柱各部分名称。
(1) 教师指着一个圆柱模型,边引导学生观察边板书:
(2) 面:圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。再用手摸一摸圆柱周围的面,你发现什么?
(3) 高:圆柱两个底之间的距离叫做圆柱的高,高在哪里?(师出示图说明)高有几条?(无数条)
提问几个学生复述圆柱体各部分名称。
3、认识并掌握圆柱体的特征。
(1)底面:师将圆柱两个度面分别画在纸上剪下重叠比较大小,让这生进一步明确第一个特征:圆柱上下两个底面是面积相等的两个圆。(板书)
(2)让这生把罐头盒或饮料罐等的商标纸用小刀沿着它们的一条高切开,再打开,看看商标纸是什么形状。让学生观察发现圆柱的第二个特征;圆柱的侧面展开是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(板书)
(3)师通过讲解使学生认识圆柱的第三个特征:同一个圆柱两底面之间的距离处处相等。(板书)
4、练习:“做一做”第1、2题。
5、指导学生认识圆柱的立体并学会画图。
(1)教师出示一个圆体模型,让学生由正面看底面,逐渐移动,(使学生看到底面由圆型变成扁圆形,)教师指出:这主要是因为我们视线的关系。有时,我们看到的圆柱底面不是圆形的而是扁圆形的。根据美术上的透视原理,圆柱的两个底面画在平面图上,一般都画成扁圆形的。
(2)教师画立体图,请学生指出各部分名称,然后教师板书各部分名称,强调高有几种不同表示方法,有时也叫长、厚、深。
(1) 让学生练习画各种位置的圆柱体立体图,并标出各部分名称。
三、 全课总结
1、提问:圆柱体各部分名称是什么?圆柱有哪些特征?
2、指导看书第31、32页的内容。
3、思考:圆柱体的侧面展开后还会出现其他什么图形吗?如果会,那是什么图形?这些图形的各部分与圆柱的有关部分关系怎样?
四、 课内外作业:
完成第32页的“做一做”的第3题,及练习七的第1题。

第二课时:圆柱的侧面积和表面积的计算

教学内容:
圆柱的侧面积和表面积的含义及计算方法。
教学目的:
使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确地运用公式计算出圆柱的侧面积和表面积。
教学重点、难点:
理解和掌握求圆柱表面积的计算方法。
教具准备:
圆柱体表面展开圆模型,学生自作一个圆柱体纸筒、投影
教学过程
一、复习
1、口算
2、d=4厘米 C=? S=?
R=5分米 C=? S=?
3、口答:圆柱体的各部分名称和特征。
二、新授
1、引导
上一节课我们已经认识了圆柱体以及圆柱体的特征,还制作了圆柱体纸筒,现在请大家拿出来看看谁做的最好。今天我们就是要研究圆柱体表面保个部分大小的计算。
2、圆柱体侧面积计算公式的推导。
教师手拿教具边演示边讲解,我们先来看圆柱的侧面,如果我们都把圆柱的侧面展开,大家发现圆柱的侧面展开后是什么形状呢?这个侧面展开后的长方形面积与圆柱侧面的面积的关系怎样呢?那么求圆柱的侧面积只要求谁的面积?这个长方形的长相当于圆柱哪一部分的长度?宽相当于哪一部分的长度?圆柱的侧面积应当怎样求?
同学们能不能根据这两个关系,再根据长方形面积公式推出一个圆柱的侧面积的计算公式。
教师边问边板书如下:
长方形的面积=长×高
圆柱的侧面积=底面周长×高
最后请几个学生口述侧面积计算公式推导过程。
3、尝试练习
(1) 请同学运用刚才学到的计算公式解答下题:
例1:一个圆柱、底面直径是0.5米,高是1.8米,求它的侧面积?

『肆』 求五年级下册数学圆形的重点题型,以及解决方法。

1.保龄球的半径大约复是1dm,球制道的长度约为18m,保龄球从一端滚到另一端,最少要滚动多少周? 2.一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条? 3.杂技演员表演独轮车走钢丝.车轮的直径是40cm,要骑过50米长的钢丝,车轮大约转动多少周? 4.小东量得一棵树的树干最粗处的周长是125.6cm,该树干最粗处横截面的面积是多少? 5.把一个圆形纸片剪开后,拼成一个宽等于半径,面积不变的近视长方形,这个长方形的周长是16.56厘米,剪开的圆纸片的面积是多少平方厘米? 6.画一个周长是12.56厘米的圆,圆规两脚尖之间的距离为()厘米,画出的这个圆的面积是()平方厘米 7.把一个长8cm,宽5cm的硬纸板剪成半径为1cm的小圆片,最多能剪多少个小圆片? 8.在田径比赛中,铅球的投掷圈是直径2.1米的圆,铁饼的投掷圈是直径2.5米的圆。铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米? 9.小华量得一张圆桌面的面积是3.768米。这张圆桌面的面积是多少平方米?(得数保留两位小数) 10.一个半径为4的圆,在圆上任意一点再画一个半径为4的圆,求相交部分的面积

阅读全文

与小学5年级圆的知识点总结相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99