① 小学数学四年级知识点梳理
小学数学四年级(上册) 知识点
数数知识点:
1、认识数级、数位、计数单位,并了解它们之间的对应关系。
数级 …… 亿级 万级 个级
数位 …… 千亿位 百亿位 十亿位 亿
位 千万位 百万位 十万位 万
位 千
位 百
位 十
位 个
位
计数单位 …… 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个
2、十进制计数法。相邻两个计数单位之间的进率是十。
3、数数。能一万一万地数,十万十万地数,一百万一百万地数……
亿以内数的读法、写法知识点:
1、 亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。
2、 亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、 比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
北师大版小学数学四年级(下册)知识点
一 小数的认识和加减法
【知识要点】
小数的意义
1、小数的意义: 用来表示十分之几、百分之几、千分之几……的数,叫小数。
2、体会十进分数与小数的关系,并能互相转。
3、表示十分之几的小数是一位小数,百分之几的小数是两位小数,千分之几的小数是三位小数……
4、小数的读写法。
5、借助计数器,介绍小数部分的数位以及数位之间的进率
6、掌握小数的数位和计数单位 。
7、了解小数的组成:整数部分和小数部分
测量活动(小数的单位换算 )
1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位……)。低级单位转化为高级单位时,先将这个低级单位的数改写成分数的形式,再写成小数的形式。
2、会进行单名数与复名数之间的互化。
比大小(比较小数的大小)
1、会比较两个小数的大小以及将几个小数按大小顺序排列。
2、比较小数大小的方法:先看整数部分,整数部分大的小数就大。整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大……
购物小票-----小数的加减法(不进位,不退位)
1、不进位加法,不退位减法的计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算。
2、能解决简单的小数加减法的实际问题。
量 体 重----小数的加减法(进位加、退位减)
1、小数进位加法和退位减法的计算法则(同整数加、减法的法则相同)。
2、小数的性质:小数末尾加上“0”或去掉“0”小数的大小不变。
3、整数减去小数,可以在整数小数点的后面添上“0”,帮助计算。
歌手大赛---小数加、减法的混合运算
1、掌握小数混合运算的顺序与整数四则混合运算一样。
2、整数加、减法的运算定律同样适用于小数加减法。
3、掌握小数加、减法的估算。
二 认识图形
【知识框架】
1、图形分类(按不同标准给已知图形进行分类)
三角形的分类(认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形)
2、三角形 三角形内角和
三角形三边之间的关系
3、四边形的分类(初步认识梯形、进一步认识平行四边形)
4、图案欣赏
【知识要点】
图形分类
1、按照不同的标准给已知图形进行分类:
(1)按平面图形和立体图形分;
(2)按平面图形时否由线段围成来分的;
(3)按图形的边数来分。通过自己动手分类,对图形进行再认识,了解图形的特征。
2、了解平行四边形易变形和三角形的稳定性在生活中的应用。
三角形分类
1、把三角形按照不同的标准分类,并说明分类依据。
(1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。
(2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形。
2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊
的等腰三角形。
三角形内角和
1、任意一个三角形内角和等于180度。
2、 能应用三角形内角和的性质解决一些简单的问题。
三角形边的关系
1、 三角形任意两边之和大于第三边。
2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形。如果能围
成三角形,能围成一个什么样的三角形。
四边形的分类
1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。
2、知道长方形、正方形是特殊的平行四边形。
3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。
图 案 欣 赏
1、通过欣赏图案,体会图形排列的规律,感受图案的美。
2、利用对称、平移和旋转,设计简单的图案。
三 小数乘法
【知识框架】
小数乘法的意义 小数乘法的意义
小数点移动引起小数大小变化的规律
积的小数位数与乘数的小数位数的关系
计算小数乘法 会用竖式计算小数乘法及估算
小数的混合运算(整数运算定律完全适合小数)
【知识要点】
文具店(小数乘法的意义)
通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算。
1、小数乘法的意义
小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的十分之几,百分之几……是多少.
2、小数的计算法则
计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0.
小数点搬家(掌握小数点移动引起小数大小变化的规律)
明白小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。
街心广场(积的小数位数与乘数的小数位数的关系)
积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数。
包装(小数乘法2)
小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算。根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数。
爬行最慢的哺乳动物(小数乘法3)
进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零……
手拉手(小数的混合运算)
小数四则混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律。等等。
四 观察物体
不同位置观察物体的范围不同
不同位置观察物体的形状不同
节日礼物(不同位置观察物体的范围不同)
1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。
2、根据观察到的画面,判断出观察者所在的位置。
天安门广场(不同位置观察物体的形状不同)
1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。
2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。
第五单元“小数除法”
《精打细算》―――除数是整数的小数除法
(1)、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
(2)、小数除以整数的计算方法:除数为整数的小数除法和整数除法的计算类似,只要商的小数点和被除数的小数点对齐就可以了。
2、《参观博物馆》―――整数除以整数商是小数的小数除法
整数除以整数,商是小数的小数除法的计算方法:先按照整数除法的法则去做,如果除到被除数的末尾仍有余数,就在后面填上0继续除。
3、《谁打电话的时间长》―――除数是小数的除法
(1)、商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
(2)、除数是小数的小数除法的计算方法:要把被除数和除数扩大相同的倍数,使除数变成整数,再按照小数除以整数的方法进行计算。
4、《人民币兑换》―――积、商的近似值
求近似值方法:积取近似值是先精确计算,再根据题目要求取近似值;商取近似值是直接根据要求多除一位,然后根据题目要求取近似值。注意:有时会出现四不舍、五不入的情况,应根据题目的特点去求出近似数。
5、《谁爬得快》―――循环小数
(1)、循环现象:生活中很多时候有依次不断重复出现的现象。如:日出日落、时间……
(2)、循环小数:从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数就叫做循环小数。
(3)、 会用四舍五入法对循环小数取近似值,方法与小数取近似值的方法相同,保留几位小数就看这个小数的下一位。
6、《电视.......》――小数的四则混合运算
(1)、小数连除和乘除混合运算,运算顺序和整数是一样的。
(2)、计算小数四则混合运算和整数四则混合运算的顺序完全相同。
激情奥运
(1)通过“奥运”提供的各种信息,综合应用所学的知识和方法,解决有关的问题。
(2)通过解决奥运赛场上的有关问题,体会到数学和体育这间的联系,进一步体会数学的价值。
六 游戏公平
【知识框架】
通过游戏活动,体验事件发生的等可能性。
等可能
通过游戏活动分析,判断游戏规则的公平
能制定公平的游戏规则。
能通过实验感受实际生活中的随机性。
可能性不相等
游戏公平能通过游戏活动,体验事件发生可能性不相等。
能辨别游戏可能性是否相等。
能通过自己的分析思考修改游戏规则使之公平,且方法多样。谁 先 走(判断规则的公平性,设计公平的规则)
【知识要点】
1、体会事件发生的等可能性。体会可能性相同游戏公平,可能性不同游戏不公平。
2、感受规则在游戏中的作用,建立规则意识。并会制定公平的游戏规则。
3、进一步体验游戏中存在的随机性的特点。
七 方程
用字母表示数.
方程1.方程的意义2.解简易方程3.列方程解应用题
【知识要点】
用字母表示数
1、用字母表示运算定律和有关图形的面积公式。
例如:加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
减法的特性:a-b-c=a-(b+c)
乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b+c)=a×b×a×c
正方形周长:c=4a正方形面积:s=a×a
长方形的周长:C=(a+b)×2长方形面积:s=a×b
此外,还可以拓展到以前曾经学过的
路程=速度×时间总价=单价×数量……
2、字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略。例如:a×5=5·a=5a 数字一般都写在字母的前面。
3、区别a的平方和2乘a的区别。
方程(方程的意义)
1、了解方程的意义:含有未知数的等式叫做方程。
2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.
3、根据情境图找出等量关系,会列方程。
天平游戏一(解简易方程未知数是加数或被减数)
1、等式两边都加上或减去同一个数,等式仍然成立。
2、能根据等式的这个性质求出方程中的未知数。
方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
3、学会检验方程的解是否正确。
天平游戏二(解简易方程未知数是因数或被除数)
1、等式两边都乘或除以同一个数(零除外),等式仍然成立。
2、能根据一定的情境,列方程解决问题。
猜数游戏(解简易方程)
1、会利用等式的性质解ax±b=c类型的方程。并能够把方程的解带回方程中进行检验。
2、会用方程解答简单的应用题。
邮票的张数(列方程解应用题)
1、学会解形如cx±ax=b这样的方程,能够运用方程解应用题。
2、使学生掌握应将一倍数设为未知数.
② 请问小学4,5,6年级数学分别具体学什么知识 今年暑假去支教,负责讲数学。求具体知识点,我好用来准备材料
你好我把4,5,6年级上下册的知识点发过来哦,希望能帮到你.人教版的内容:
四年上册一、大数的认识(数的读写、比较大小;用将整亿、整万数改写成用亿或万做单位的数;用四舍五入法求近似数;数的产生、自然数、十进制计数法;计算工具的认识及电子计算器的使用。)●1亿有多大?
二、角的度量(直线、射线、度、量角、平角和周角、画角)
三、三位数乘两位数(一位数乘两位数(积在100以内)或几百几十的数的口算;速度的表示法;时间、速度和路程之间的关系;积的变化规律、乘法估算)
四、平行四边形和梯形(垂直与平行、平行四边形和梯形的认识)
五、除数是两位数的除法(整十数除整十、几百几十的数(商一位数)的口算;两三位数除以两位数的笔算;商的变化规律;除法估算)
六、统计(纵向复式条形统计图、横向复式条形统计图;运用数据进行推理判断)●你寄过贺卡吗?
七、数学广角(运筹思想及对策论在解决问题中的运用---合理安排时间;)八、总复习
四年下册一、四则运算(三步以内的含两级运算的四则运算、三步以内的含小括号的四则运算;相应的实际问题;关于0的计算的总结)
二、位置与方向(根据方向和距离确定物体的位置;描述简单的路线图。)
三、运算定律与简便计算(加法交换律、结合律;乘法交换律、结合律和分配律;运用运算定律进行简便计算;连减、连除运算中的简便计算;需要变式后能简算的题目,如12×25;题中只有一部分可以简算的,如31×2+30×2+26。)●营养午餐
四、小数的意义和性质(小数的意义、计数单位、读写法、比较大小;小数的性质;小数点位置移动引起小数大小变化的规律;小数和十进复名数的相互改写;用“四舍五入法”求小数的近似数;把较大的数改写成用万或亿作单位的小数。)
五、三角形(三角形任意两边之和大于第三边;三角形的内角和是180度;三角形的分类;图形的拼组。)
六、小数的加法和减法(小数加减法;小数加减混合运算;整数加减法运算定律推广到小数加减法运算中。)七、统计(单式折线统计图;根据数据变化进行合理推测。)八、数学广角(植树问题)●小管家九、总复习
五年上册一、小数乘法(小数乘法;整数乘法运算定律推广到小数乘法运算中。)
二、小数除法(小数除法;去尾法、进一法取近似值;循环小数;用计算器探索规律。)
三、观察物体(辨认从不同方位看到的物体的形状和相对位置)
四、简易方程(用字母表示数、公式、运算定律;等式的性质;方程、解方程;列方程解决简单问题。)●量一量找规律
五、多边形的面积(平行四边形、三角形和梯形的面积计算;简单组合图形面积的计算。)
六、统计与可能性(等可能性事件及游戏规则的公平性;求简单事件发生的可能性;中位数及求法;根据实际情况合理选择适当的统计量来描述数据的特征。)●铺一铺七、数学广角(数字编码)八、总复习
五年下册一 、图形的变换 (轴对称图形的特征和性质、在方格纸上画出一个图形的轴对称图形;图形旋转的特征和性质,能在方格纸上把简单图形旋转90°;运用对称、平移和旋转的方法在方格纸上设计图案。)
二、因数与倍数 (因数、倍数、质数、合数;2、5、3的倍数的特征;)
三 、长方体和正方体 (长方体和正方体的特征;体积(容积)和体积单位;长方体和正方体表面积的计算;长方体和正方体体积的计算;不规则物体的体。) ●粉刷围墙
四 、分数的意义和性质 (分数的产生、分数的意义;分数与除法的关系;真分数和假分数;分数的基本性质;分数的比较大小;公因数与最大公因数、公倍数与最小公倍数;约分和通分;分数与小数的互化。)
五 、分数的加法和减法 (分数加减法;整数加减法运算定律推广到分数加减法运算中。)
六、 统计 (众数的含义及求法;根据数据的具体情况,选择适当的统计量表示数据的不同特征;复式折线统计图;根据需要,选择条形或折线统计图表示数据;对数据进行简单的分析和预测。) ●打电话
七 、数学广角 (渗透优化的数学思想方法)八、总复习
六年上册一、 位置 (用数对表示具体情境中物体的位置;在方格纸上用数对确定物体的位置。)二、 分数乘法 (分数乘法;整数乘法运算定律推广到分数乘法运算中;求一个数的几分之几是多少的实际问题;倒数。)
三、 分数除法 (分数除法;已知一个数的几分之几是多少求这个数的实际问题;比的意义,比与分数、除法的关系,比的基本性质,化简比和求比值;运用比的知识解决有关的实际问题。)
四、圆 (圆的特征;画圆;圆周率;圆的周长和面积的计算。) ●确定起跑线
五 、百分数 (百分数的意义、读写法;小数、分数和百分数的互化;折扣、纳税、利息的含义及简单计算;有关百分数的问题。)
六 、统计(扇形统计图) ●合理存款 七、数学广角(鸡兔同笼)八、总复习 六年下册一、负数 (负数的认识、比较大小;负数在日常生活及数学中的应用)
二 、圆柱与圆锥 (圆柱和圆锥的认识、圆柱的表面积、圆柱的体积、圆锥的体积)
三、比例 (比例的意义、比例的基本性质、解比例;正反比例、正比例图像;比例尺、图形的放大和缩小;用比例解决问题;)● 自行车里的数学
四、统计 (统计图的科学选择和使用)
五 、数学广角 (抽屉原理) ●节约用水
六、 整理与复习 1、数与代数 2、空间与图形 3、统计与概率 4、综合应用
③ 小学四年级数学
1.有一块长方形场地,如果长和宽各增加6米,面积将增加1236平方米,原来的场地周长是多少米?
做这题最好要画图,增加部分是由三个图形组成:1、长等于原来的长,宽是6米的长方形;2、长等于原来的宽,宽为6米的长方形;3、角上边长6米的正方形。
6*6=36平方米 角上边长6米的正方形的面积
1236-36=1200平方米 增加的两个长方形的面积
1200÷6=200米 原来长方形长与宽的和
200*2=400米 原来的场地周长
2.爸爸今年47岁,儿子今年21岁,几年前爸爸的年龄是儿子的3倍?
爸爸和儿子年龄的差不变,是47-21=26岁
这样就成了一道差倍应用题:几年前儿子的年龄是一份,爸爸的年龄是3份,他们的年龄差是26岁,也就是2份,一份就是13岁(儿子几年前的年龄)21-13=8年
21-(47-21)÷(3-1)=8年
3.笼子里有鸡和兔共25只,总共有70条腿,问鸡和兔各有几只?
假设25只都是鸡,就有25*2=50条腿,这样就比70条少20条腿,就要把一部分鸡换成兔,每换一只,就会多2条腿,20÷2=10只,就是说要把10只鸡换成兔。25-10=15只 鸡的只数
(70-25*2)÷(4-2)=10只 兔的只数
25-10=15只 鸡的只数
4.若A+A+B+B=80,A-B=10,求A、B各是多少。
根据:A+A+B+B=80
得出:A+B=40
因为:A+B=40;A-B=10;这就成了和差应用题,公式是:
(和+差)÷2=较大数 A=(40+10)÷2=25
(和-差)÷2=较小数 B=(40-10)÷2=15
5.学生用的课桌椅,买1把椅子和2张桌子的价钱是105元,买2把椅子和1张桌子的价钱是90元,求1张桌子和1把椅子各需要多少元?
第一次:1把椅子+2张桌子=105元
第二次:2把椅子+1张桌子=90元
两次一起买:
3把椅子+3张桌子=195元
1张桌子和1把椅子=195÷3=65元
6.张跃问老师今年多少岁,老师说:“当我像你这么大的时候,你刚刚1岁;当你像我这么大的时候,我已经37岁了。”你知道张跃和老师今年各多少岁?
画图做才行,自己画图、思考,关键是37与1的差是两人年龄差的3倍。
(37-1)÷3=12岁
12+1=13岁 张跃今年的年龄
13+12=25岁 老师今年的年龄
7.一个剧场放置了25排座位,第一排有38个座位,往后每排都比前一排多2个座位,这个剧场一共有多少个座位?
这是一道等差数列,第一排有38个座位,
那第25排就有38+(25-1)*2=86个座位 为什么是24个2呢?自己思考
(38+86)*25÷2=1550个
④ 小学四年级数学学的公式
小学四年级数学公式大全
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
三角形的面积=底×高÷2。公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面
1、单价×数量=总价 2、单产量×数量=总产量
3、速度×时间=路程 4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b
)*c
初中数学知识点归纳.
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
解一元二次方程
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
直线、射线与线段
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角
一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程
一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程
先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线
学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定
任意一个四边形,三个直角成矩形;
对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;
两对角线若相等,理所当然为矩形。
菱形的判定
任意一个四边形,四边相等成菱形;
四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;
两对角线若垂直,顺理成章为菱形。
⑤ 小学四年级下册数学知识点梳理
两端都有:数量=间隔数+1 只有一端:数量=间隔数 两端都没有:数量=间隔数- 1
⑥ 小学四年级数学下册知识点积不变化的规律
被乘数扩大(或缩小)若干倍,乘数缩小(或扩大)相同的倍数,积不变。
例如:
125×32=(125×8)×(32÷8)=1000×4=4000
124×5=(124÷2)×(5×2)=62×10=620
扩展:被乘数小数点向右(或向左)移动几位,乘数小数点向左(或向右)移动相同的位数,积不变。
例如:
2 . 3×120=23×12 . 0=276
7500×0.04=75.00×4=(75÷25)×(4×25)=3×100=300
⑦ 小学四年级数学的知识要点有哪些
一、亿以内数的认识
1. 一(个),十,百、千、万……亿都是计数单位。
2. 每相邻两个计数单位之间有什么关系?
每相邻两个计数单位的进率都是“10”。
3. 求近似数的方法叫“四舍五入”法。
4. 是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5。
5. 表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数。一个物体也没有用0表示。0也是自然数。
6. 最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
7. 每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
二、角的度量
1. 像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线。射线只有一个端点,可以向一端无限延伸。
2. 直线没有端点、可以向两端无限延伸。
3. 直线、射钱与线段有什么联系和区别?
联系:射线、线段都是直线的一部分,线段是直线的有限部分。
区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限。
4. 直线和射线都可以无限延伸。线段可以量出长度。
5. 从一点引出两条直线所组成的图形叫做角。
6. 角的计量单位是“度”,用符号号“°”表示。把半圆分成180等份,每一份所对的角的大小是1度,记作1°。
7. 锐角、钝角、直角,平角和周角之间有什么关系?
直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度,锐角<直角<钝角<平角<周角。
8. 钝角大于90°,而小于180°。锐角小于90°。平角等于180°,等于两个直角。
三、三位数乘两位数
1. 速度x时间=路程
四、平行四边形和梯形
1. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
3. 两组对边分别平行的四边形叫做平行四边形,只有一组对边平行的四边形叫做梯形。
4. 长方形和正方形可以看成特殊的平行四边形吗?为什么?
可以,因为长方形和正方形两组对边分别平行,而且都是四边形,所以可以看成特殊的平行四边形。
5. 从平行四边形一条边上的一点到对边引一条垂线。这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
6. 两腰相等的梯形叫做等腰梯形。
7. 有一种特殊的平行四边形,它的四条边都相等,这样的平行四边形叫菱形。
五、除数是两位数的除法
六、统计
七、数学广角
⑧ 小学数学4~6年级知识点整理归类
现在小学科教是什么内容啊!?把书给我看我帮你总结…嘻嘻…小小面子就学会偷懒了…
⑨ 小学四年级数学复习提纲
一、数与计算
整数数位顺序表
数级 亿级 万级 个级
数位 千亿位 百亿位 十亿位 亿位 千万位 百万位 十万位 万位 千位 百位 十位 个位
计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 一
1.每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
2.看表说一说:如10个一千万是一亿,一千万是10个一百万。
数位:个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位…
计数单位:个、十、百、千、万、十万、百万、千万、亿、十亿…
个级的数表示的是多少个“一”。万级的数表示多少个“万”。亿级的数表示多少个“亿”。
每四个数位为一级。分为:个级、万级、亿级。
读数:从高位读起,一级一级往下读,读亿级或万级的数按照个级的读法读,再在后面加上一个“亿”字或“万”字。数中间有一个0或连续有几个0,都只读一个零,每级末尾的零都不读。
写数:先写亿级,再写万级,最后写个级,哪一位上一个单位也没有,就写0占位。
3.308 4000 0860是由3个百亿、8个亿、4个千万、8个百、6个十组成;也可以说是由308个亿、4000个万、860个一组成。
4. “四舍五入”法:4、3、2、1、0舍去;5、6、7、8、9舍去后向前一位进1。
5. 用“=”和“≈”的区别:
7580000=758万 7508000≈751万
9000000000=90亿 9420000000≈94亿
省略与改写:958 5006 5200
省略亿位后面的尾数时,要看千万位:959 0000 0000
改写用“亿”作单位的数是: 959亿
6.比较数的大小
位数不同,位数多的数就大;位数相同,左起第一位的数大的那个数就大,如果左起第一位上的数相同,就比较左起第二位上的数……
7. 表示物体个数的1、2、3、4、5、6、7、8、9、10、11,…都是自然数。
一个物体也没有,用0表示。0也是自然数。
最小的自然数是0。没有最大的自然数,自然数的个数是无限的。
0不能作除数。比如:5÷0不能得到商,因为找不到一个数同0相乘得到5。
又如:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
8. 在乘法里,一个因数不变,另一个因数乘几或除以几,积也要乘几或除以几。
在除法里,被除数和除数同时扩大或缩小相同倍数(0除外),商不变。
在除法里,除数不变,被除数变大,商也变大。
在除法里,被除数不变,除数变大,商反而变小。
180÷30:可看作180除以30或30除180。
两位数除法的估算,一般是把两位数看作与它比较接近的整十数,再口算出结果。
在笔算除法时,把除数看做整十数,想这个整十数乘几,积小于并且最接近被除数,就商几或用几试商。
从被除数的高位数起,先看被除数的前两位;如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;余下的数必须比除数小
两位数乘法,先用一个乘数个位上的数去乘另一个乘数,得数的末尾和个位对齐;再用这个乘数十位上的数去乘另一个乘数,得数的末尾和十位对齐,最后把两次乘得的积加起来。
先把0前面的数相乘,乘完以后再看乘数末尾共有几个0,就在乘得的数的末尾填写几个0
二、空间与图形
1. 线段有两个端点,可以量出长度。
射线只有一个端点,可以向一端无限延伸。从一点出发可以画无数条射线。
直线没有端点,可以向两端无限延伸。经过任意一点可以画无数条直线,经过任意两点只能画一条直线。
2. 从一点引出两条射线所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。角的符号用“∠”表示。
量角的大小,要用量角器。角的计量单位是“度”。用符号“°”表示。
角的大小与角的两边画出的长短没有关系,角的大小要看两条边叉开的大小。
锐角:小于90° 直角:等于90° 钝角:大于90°而小于180°
平角:等于180° 周角:等于360° 1平角=2直角 1周角=2平角=4直角
钟表每一小时是30°,比如2小时的夹角就是60°。
三角形内角之和是180°,四边形内角之和是360°。
∠1和∠2如果在同一条线的同一侧上,就是两角成平角,∠1+2=180°。
3. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
4. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
5. 平行线之间的距离处处相等。
6. 两组对边分别平行的四边形叫做平行四边形。平行四边形容易变形。
长方形和正方形可以看成是特殊的平行四边形。
只有一组对边平行的四边形叫做梯形。两腰相等的梯形叫做等腰梯形。
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。画高线要用虚线,并做出垂足记号。
两个完全一样的梯形可以拼成一个平行四边形。
两个高相等的平行四边形拼在一起还是平行四边形。
7. 四边形之间的关系图。
8. 平行四边形:两组对边分别平行;两组对边分别相等。
长方形:两组对边分别平行;两组对边分别相等;有4个直角。
正方形:两组对边分别平行;两组对边分别相等;四边相等,4个直角。
长方形有2条对称轴,正方形有4条对称轴,等腰梯形只有1条对称轴。
三、熟记数量关系
速度 × 时间 = 路程 单价 × 数量= 总价
工作效率 × 工作时间= 工作总量
路程 ÷ 时间 = 速度 总价÷ 数量 =单价
如:每小时80千米:80千米/时 240千米 3时 每本5元:5元/本 40元 8本
每分钟225米: 225米/分 1800米 8分 每件28元:28元/件 168元 6件
第一单元 除法
1、除数是两位数的除法的笔算法则:
(1)从被除数的高位数起,先看被除数的前两位;
(2)如果前两位比除数小,就要看前三位;除到被除数的哪一位,商就写在那一位的上面;
(3)余下的数必须比除数小。
2、除数是两位数的除法,一般把除数看作和它接近的整十数来试商;试商大了要调小,试商小了要调大。
3、在有余数的除法算式中,被除数=商х除数+余数
4、三位数除以两位数,商可能是一位数,也可能是两位数。
第二单元 角
1、 把线段的一端无限延长,就得到一条射线。把线段的两端都无限延长,就得到一条直线。线段和射线都是直线的一部分。
图形 相同点 不同点
线段 都是直的 有两个端点,有限长(可以度量)
射线 有一个端点,无限长
直线 没有端点,无限长
2、经过一点可以画无数条直线,经过两点只可以画一条直线(两点确定一条直线)。
3、两点间所有连线中,线段最短。
连接两点的线段的长度叫做这两点间的距离。
4、从一点起画两条射线,可以组成一个角。角通常用符号“∠”来表示。
5、角有一个顶点,两条边。
6、角的大小与两条边的*开的大小有关,与边的长短无关。
7、量角器就是度量角的工具。把半圆分成180等份(平均分成180份),每一份所对的角就是1度的角。“度”是计量角的单位,用符号“°”表示,如1度记做1°。
8、量角和画角要做到“点对点,线对边,再看另一边。0在内数内,0在外数外。”
9、锐角小于90°;直角等于90°;钝角大于90°又小于180°;平角180°;周角360°。
1周角=2平角=4直角
10、1小时,时针转一大格,所对的角是30°;分针转一圈,所对的角是360°。
第三单元混合运算
1、在没有括号的混合运算中,如果只含有加减法或只含有乘除法应从左往右计算;如果含有加减法和乘除法应先算乘除法,在算加减法。
2、在有括号的混合运算中,应先算括号里面的。
第四单元平行和相交
1、同一平面内,不相交的两条直线互相平行,其中一条直线是另一条直线的平行线。(同一平面内,两条直线不平行就相交)
2、画平行线应先放三角尺,再放直尺,平移三角尺。
3、两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫垂足。
4、画垂线应先放直尺,再放三角尺,平移三角尺。
5、点到直线之间垂直线段最短。
从直线外一点到这条直线所画的垂直线段的长度,叫做这点到这条直线的距离。
6、两条平行线之间所有的垂直线段的长度相等。