Ⅰ 小学六年级的行程问题题目!
分数
1:A,B两地相距1800米.甲乙两人同时从A,B两地出发,若相向而行12分钟相遇;若同向而行90分钟甲追内上乙.甲从A地出发直容走到B地要几分钟?答:1800/12=150米 1800/90=20米 [150+20]/2/85
2:两列火车同时从两个城市相对开出,6.5小时相遇.相遇时甲比乙多行了52千米,乙车的速度是甲车速度的8分之7,两地相距多少千米?答:[21*3+9]/2/2=18千米
3:一架飞机所带的燃料最多可以用6小时,去时,时速1500千米;回来逆风,时速1200千米.这架飞机飞出去多远就需望回飞?答;6/[1/1500+1/1500]=4000千米
呵呵*是乘,/是除
先回答这些吧
Ⅱ 小学行程问题(简单的)
80/3 km/h
先设卡车的速度为x km/h.
4*(50+x)=5*(38+x)可求出x=20km/h.
然后设C车速度为y km/h.
4*(50+20)=6*(y+20)
可以求出 y=80/3 km/h.
Ⅲ 行程问题是小学几年级的教学内容
众所周知,未来的教育,倡导开放式学习,把学习的地点扩展到社会、网络;倡导探索式学习,积极引导学生探索未知领域;倡导合作式学习,通过共享达到共同提高的目的;倡导多学科之间的整合、相互应用。未来教育模式要求学生围绕一个问题,利用现代教育信息技术积极主动地投身于探究活动,去收集相关的资料,并解决实际问题。结合这两个方面,我依据维果茨基的支架理论,应用美国JAVA互动教学软件,让学生小组合作,自主探索,实践《行程问题》第一课时的学习。
《行程问题》是人教版小学数学第九册第54~59页的教学内容。学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体的运动情况。这里以相遇问题为主,研究两个物体在运动中的《行程问题》是人教版小学数学第九册第54~59页的教学内容。速度、时间、路程之间的数量关系。两个物体运动的情况是多种多样的有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是比较困难的。本册教材的重点是教学两个物体相向运动的应用题。
因此,特制定如下教学目标:
1、知识与技能目标:
理解“相遇问题”的意义,形成两个物体运动的空间观念。
2、解决问题目标:
引导学生探索发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的应用题。
3、情感与态度目标:
创设师生互动情境,在民主、宽松、和谐的学习氛围中,培养学生严谨科学的学习态度、勇于探索创新的精神以及乐于合作的意识,发展学生的个性。
教学重点:相遇应用题的数量关系。
教学难点:理解“相遇”“相向而行”“速度和”的含义。
课前需掌握的知识和技能:
单个物体运动的数量关系:速度×时间=路程
路程÷速度=时间
路程÷时间=速度
Ⅳ 几个小学数学行程问题
1、甲乙两车同时从相距180KM的A、B两地相向而行,3小时候,两车距离终点30KM的地方相遇。已知甲比乙的速度要快,求甲、乙的速度是多少?
180/2=90(KM)
90+30=120(KM)
120/3=40(km/时)
(180-120)/3=20(km/时)
答 :甲速度为40km/时,乙速度为20km/时
2、甲乙两人分别从A、B两地同时出发,相向而行。往返于A、B之间,第一次相遇在距A地20KM处,第二次在距A地40KM处,求A、B的距离
不会做
3、一位同学在360米长的环形跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米。求他后一半路程用了多少时间?
解:设他跑全路程用了X秒
1/2X*5+1/2X*4=360
1/2X*(5+4)=360
1/2X*9=360
9/2X=360
X=360*2/9
X=80
360/2=180m
80/2=40秒
180/5=36秒
80-36=44秒
答:后一半路程用了44秒
祝你学习进步
Ⅳ 小学行程问题
很显然第一次相遇两个人一共走了AB
第二次相遇两个人一共走了2个AB
所以两个人第二次相遇时走的路程都是第一次的两倍
得到:甲走的: CB+BD=2AC=2CB+200
乙走的: CA+AD=2BC=2AD+200
化简得: AC=BC+100
BC=AD+100
得到: AC=AD+200 2式
而AB=AC+BC=AD+200+AD+100=2AD+300
且AB=3AD
所以代入得到:AB=3AD=2AD+300
所以 AD=300
代入2式得 AC=500
所以甲的速度是500/5=100(米/分)
记得采纳哦,谢谢,呵呵
Ⅵ 小学数学行程问题整理
追及问题:
(相向而行):追及路程/追及速度和=追及时间
(同向而行):追及路内程/追及速度差=追及时间
行船问容题:
V顺=V船+V水
V逆=V船-V水
(V顺+V逆)/2=V船
(V顺-V逆)/2=V水
(V=速度)
我的肯定是正确的哦!是老师说的^_^
Ⅶ 小学行程问题,追及问题相关公式有哪些
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式.
过桥问题:关键是确定物体所运动的路程,参照以上公式.
仅供参考:
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数.
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数.
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数.
【平均数问题公式】
总数量÷总份数=平均数.
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间.
【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和.
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程.
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和.
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速.
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
Ⅷ 小学行程问题应用题20道
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。
解:
600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。
解:
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分钟,乙需90分钟
故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时
6*33=198千米
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
解:
把路程看成1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
Ⅸ 小学行程问题应用题
速度和=(112.5+112.5)÷3=75千米/小时
相距=75×3.5=262.5千米