导航:首页 > 小学全识 > 小学数学总结大全集

小学数学总结大全集

发布时间:2020-12-05 08:05:18

小学数学总结作文300~400字

学期的工作已经结束,为了总结经验,寻找不足。现将一学期的工作总结如下:
一、业务学习
加强学习,提高思想认识,树立新的理念 . 坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。
二、新课改
通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点,承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果 .
三、教学研究 .
教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:
(一)发挥教师为主导的作用
1 、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
2 、注重课堂教学效果。针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点, 突破难点。
3 、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,自己执教二节公开课,尤其本学期,自己执教的公开课 , 学校领导和教师们给我提出了不少宝贵的建议,使我明确了今后讲课的方向和以后数学课该怎么教和怎么讲。本年度外出听课 12 节,在校内听课 32 节。
4 、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。
四、工作中存在的问题
1 、教材挖掘不深入。
2 、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3 、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导 .
4 、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。
5 、教学反思不够。
五、今后努力的方向
1 、加强学习,学习新课标下新的教学思想。
2 、学习新课标,挖掘教材,进一步把握知识点和考点。
3 、多听课,学习同科目教师先进的教学方法的教学理念。
4 、加强转差培优力度。
5 、加强教学反思,加大教学投入。

Ⅱ 小学数学知识点总结

一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。

Ⅲ 小学数学优化总结大全

课堂练习是小学数学课堂教学的重要组成部分,它是检验学生课堂学习效果专和巩固知识的重要途径属,是培养学生计算、 分析、综合能力的重要环节,是学生建构认识结构的重要手段。随着教学改革的不断深化,如何优化课堂教学提高课堂练习 效率的研究日益受到广大教师的重视

Ⅳ 小学数学总结零的认识,要详细,分出几个大点

小学数学知识点汇总(2009-09-1415:00:22)小学一年级九九乘法口诀表。学会基础加减乘。小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。小学四年级线角自然数整数,素因数梯形对称,分数小数计算。小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。小学六年级比例百分比概率,圆扇圆柱及圆锥。必背定义、定理公式三角形的面积=底×高÷2。公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积=1/3底面×积高。公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克=1000克=1公斤=1市斤1公顷=10000平方米。1亩=666.666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)17、互质数:公约数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.14141432、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3.14159265433、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……34、什么叫代数?代数就是用字母代替数。35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c一般运算规则1每份数×份数=总数总数÷每份数=份数总数÷份数=每份数21倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3速度×时间=路程路程÷速度=时间路程÷时间=速度4单价×数量=总价总价÷单价=数量总价÷数量=单价5工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6加数+加数=和和-一个加数=另一个加数7被减数-减数=差被减数-差=减数差+减数=被减数8因数×因数=积积÷一个因数=另一个因数9被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4长方体V:体积s:面积a:长b:宽h:高表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)体积=长×宽×高V=abh5三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6平行四边形s面积a底h高面积=底×高s=ah7梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28圆形S面积C周长∏d=直径r=半径周长=直径×∏=2×∏×半径C=∏d=2∏r面积=半径×半径×∏9圆柱体v:体积h:高s;底面积r:底面半径c:底面周长侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3

Ⅳ 小学数学总结

第一部分:概念
1,加法交换律:两数相加交换加数的位置,和不变.
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3,乘法交换律:两数相乘,交换因数的位置,积不变.
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.o除以任何不是o的数都得o.
简便乘法:被乘数,乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7,什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8,什么叫方程式答:含有未知数的等式叫方程式.
9,什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10,分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15,分数除以整数(0除外),等于分数乘以这个整数的倒数.
16,真分数:分子比分母小的分数叫做真分数.
17,假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18,带分数:把假分数写成整数和真分数的形式,叫做带分数.
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变.
20,一个数除以分数,等于这个数乘以分数的倒数.
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
22,什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
23,什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
24,比例的基本性质:在比例里,两外项之积等于两内项之积.
25,解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k(k一定)或kx=y
27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y=k(k一定)或k/x=y
28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
33,要学会把小数化成分数和把分数化成小数的化发.
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)
35,互质数:公约数只有1的两个数,叫做互质数.
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.
37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)
38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分.(约分用最大公约数)
39,最简分数:分子,分母是互质数的分数,叫做最简分数.
40,分数计算到最后,得数必须化成最简分数.
41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行
42,约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.
43,偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.
44,质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).
45,合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.
46,利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47,利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.
48,自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.
49,循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3.141414
50,不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数.如圆周率:3.141592654
51,无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3.141592654……
52,什么叫代数代数就是用字母代替数.
53,什么叫代数式用字母表示的式子叫做代数式.如:3x=ab+c
----------------------------------------------------------------------------------------------------------------------
第二部分:定义定理
一,算术方面
1.加法交换律:两数相加交换加数的位置,和不变.
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
3.乘法交换律:两数相乘,交换因数的位置,积不变.
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8.方程式:含有未知数的等式叫方程式.
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10.分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15.分数除以整数(0除外),等于分数乘以这个整数的倒数.
16.真分数:分子比分母小的分数叫做真分数.
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18.带分数:把假分数写成整数和真分数的形式,叫做带分数.
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20.一个数除以分数,等于这个数乘以分数的倒数.
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
----------------------------------------------------------------------------------------------------------------------
第三部分:几何体
1.正方形
正方形的周长=边长×4公式:c=4a
正方形的面积=边长×边长公式:s=a×a
正方体的体积=边长×边长×边长公式:v=a×a×a
2.正方形
长方形的周长=(长+宽)×2公式:c=(a+b)×2
长方形的面积=长×宽公式:s=a×b
长方体的体积=长×宽×高公式:v=a×b×h
3.三角形
三角形的面积=底×高÷2.公式:s=a×h÷2
4.平行四边形
平行四边形的面积=底×高公式:s=a×h
5.梯形
梯形的面积=(上底+下底)×高÷2公式:s=(a+b)h÷2
6.圆
直径=半径×2公式:d=2r
半径=直径÷2公式:r=d÷2
圆的周长=圆周率×直径公式:c=πd=2πr
圆的面积=半径×半径×π公式:s=πrr
7.圆柱
圆柱的侧面积=底面的周长×高.公式:s=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积.公式:s=ch+2s=ch+2πr2
圆柱的总体积=底面积×高.公式:v=sh
8.圆锥
圆锥的总体积=底面积×高×1/3公式:v=1/3sh
三角形内角和=180度.
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.
----------------------------------------------------------------------------------------------------------------------
第四部分:计算公式
数量关系式:
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和和-一个加数=另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商×除数=被除数
******************************************************
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
******************************************************
植树问题:
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
******************************************************
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
******************************************************
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
******************************************************
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
******************************************************
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
******************************************************
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
******************************************************
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
******************************************************
面积,体积换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1公顷=10000平方米1亩=666.666平方米
(5)1升=1立方分米=1000毫升1毫升=1立方厘米
******************************************************
重量换算:
1吨=1000千克
1千克=1000克
1千克=1公斤
******************************************************
人民币单位换算
1元=10角
1角=10分
1元=100分
******************************************************
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒

Ⅵ 小学数学总结

期末教学工作总结
短暂而又充实的一学期即将过去了,一学期来我与班上58位学生紧密地连在一起,发挥团队精神,以教务处的学期工作计划为思想宗旨,以开展“有效教学”的研究与实践为指导,推动我校素质教育的向前发展,着力开展以校为本的研究活动,促进教师的有效教学和学生有效学习的策略与方法的转变。探讨提高课堂教学效益的多种途径,全面提高教育、教学质量,提倡严谨、科学、务实的教学作风。在学校及教务处的领导下,按期初制定好的计划有条不紊地开展工作,认真完成各项任务。现总结如下:
1、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前作好充分的准备,并制作各种有利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
2、增强上课技能,提高教学质量,使讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
4、认真批改作业, 布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
5、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
当然,工作中夜存在一些不足,比如:1、教材挖掘不深入;2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足;3、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导;4、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性;5、教学反思不够深入;6、自订的学生提问问题的量化计分表不够完善,有待更一步完善。
今后,我会努力的做到:1、加强学习,学习新课标下新的教学思想;2、学习新课标,挖掘教材,进一步把握知识点和考点;3、多听课,学习同科目教师先进的教学方法的教学理念;

Ⅶ 小学数学知识总结

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

Ⅷ 小学数学知识点总结

数学概念整理:

整数部分:

十进制计数法;一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法
整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。
整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。
四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。
整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。

小数部分:

把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。
小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数
小数的读法:整数部分整数读,小数点读点,小数部分顺序读。
小数的写法:小数点写在个位右下角。
小数的性质:小数末尾添0去0大小不变。化简
小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。
小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。

分数和百分数

■分数和百分数的意义
1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。
2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。
3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。
4、 成数:几成就是十分之几。
■分数的种类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数
■分数和除法的关系及分数的基本性质
1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。
2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。
3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。
■约分和通分
1、 分子、分母是互质数的分数,叫做最简分数。
2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。
3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
■倒 数
1、 乘积是1的两个数互为倒数。
2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
3、 1的倒数是1,0没有倒数
■分数的大小比较
1、 分母相同的分数,分子大的那个分数就大。
2、 分子相同的分数,分母小的那个分数就大。
3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。
4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
■百分数与折数、成数的互化:
例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。
■纳税和利息:
税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间

百分数与分数的区别主要有以下三点:
1.意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。
2.应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
3.书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

数的整除

■整除的意义

整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)
除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
■约数和倍数

1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
■奇数和偶数

1、能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数。例如:1、3、5、7、9……

■整除的特征

1、能被2整除的数的特征:个位上是0、2、4、6、8。

2、能被5整除的数的特征:个位上是0或5。

3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
■质数和合数

1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。

2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。

3、1既不是质数,也不是合数。

4、自然数按约数的个数可分为:质数、合数

5、自然数按能否被2整除分为:奇数、偶数
■分解质因数

1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。

2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。
3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
4、特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。

■奇数和偶数的运算性质:
1、相邻两个自然数之和是奇数,之积是偶数。
2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

整数、小学、分数四则混合运算

■四则运算的法则

1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加

2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减

3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简

4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数

■运算定律

加法交换律 a+b=b+a

结合律 (a+b)+c=a+(b+c)

减法性质 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交换律 a×b=b×a

结合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性质 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。

如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。

简易方程

■用字母表示数

用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。

■用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写。数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。
3、数字和字母相乘时,将数字写在字母前面。

■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式

■等式与方程
表示相等关系的式子叫等式。
含有未知数的等式叫方程。
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。

■方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解。
求方程的解的过程叫解方程。

■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

■解方程的方法
1、直接运用四则运算中各部分之间的关系去解。如x-8=12
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
被乘数×乘数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41
先把3x看作一个数,然后再解。
3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,
要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。
4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

比和比例

■比和比例应用题
在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。
■解题策略
按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答
■正、反比例应用题的解题策略
1、审题,找出题中相关联的两个量
2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。
3、设未知数,列比例式
4、解比例式
5、检验,写答语

数感和符号感

■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等。
■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题。
■ 数感的培养有利于学生提出问题和解决问题能力的提高。学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系 的数学模型。具备一定的数感是完成这类任务的重要条件。如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方 式编,而不同的编排方案可能在实用性和便捷性上是不同的。如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目。

■ 数概念本身是抽象的,数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程。让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感。在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周 围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象。估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量 的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助。
■无论在哪个学段,都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素。
■引进字母表示,是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步。尽可能从实际问题中引入,使学生感受到字母表示的意义。
第一,用字母表示运算法则、运算定律以及计算公式。算法的一般化,深化和发展了对数的认识。
第二,用字母表示现实世界和各门学科中的各种数量关系。例如,匀速运动中的速度v、时间t和路程s的关系是s=vt。
第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题。例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程。
■字母和表达式在不同场合有不同的意义。如:
5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;
Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;
(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;
如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化。
■如何培养学生的符号感
要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感。
必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算。但是并不主张进行过繁的形式运算训练。
学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展。

量的计算

■事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
■数+单位名称=名数
只带有一个单位名称的叫做单名数。
带有两个或两个以上单位名称的叫做复名数
高级单位的数如把米改成厘米 低级单位的数如把厘米改成米
■只带有一个单位名称的数叫做单名数。如:5小时, 3千克 (只有一个单位的)
带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)
56平方分米=(0.56)平方米 就是单名数转化成单名数
560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.
■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.
■常用计算公式表
(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a × a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2
(4)正方形周长=边长× 4,计算公式s= 4a i
(5)平形四边形面积=底×高,计算公式s=a h.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=a bh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a3
(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh
(12)圆柱的体积=底面积×高,计算公式v=s h

■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天
■闰年年份是4的倍数,整百年份须是400的倍数。
■平年一年365天,闰年一年366天。
■公元1年—100年是第一世纪,公元1901—2000是第二十世纪。

平面图形的认识和计算

■三角形
1、三角形是由三条线段围成的图形。它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。
2、三角形的内角和是180度
3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形
4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形
■四边形
1、四边形是由四条线段围成的图形。
2、任意四边形的内角和是360度。
3、只有一组对边平行的四边形叫梯形。
4、两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
■圆
圆是平面上的一种曲线图形。同圆或等圆的直径都相等,直径等于半径的2倍。圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。
■扇形 由圆心角的两条半径和它所对的弧围成的图形。扇形是轴对称图形。
■轴对称图形
1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。
2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。
■周长和面积
1、平面图形一周的长度叫做周长。
2、平面图形或物体表面的大小叫做面积。
3、常见图形的周长和面积计算公式

Ⅸ 小学数学思维总结

数学思维立足于孩子的未来,以数学为载体,着手于孩子最熟悉的场景,目的是将孩子打造成复合型人才。

和真正的数学思维课相比,传统教育方式还不能有效地利用现代化手段对孩子进行教育,不能将课程、环境、老师、教学方式、评估、学生等与现代化手段结合,融入到一起。





向左转|向右转




传统教育

而真正的数学思维课则是注重与现实世界的联系,从孩子熟悉的场景入手教学,传授知识,激发孩子探索的兴趣;同时,注重学习的过程对思维的锻炼,为未来的学习做事打下基础,而不仅仅是注重试卷得分。

数学思维教育还具有如下特征:

1、跨学科融合性

数学思维的锻炼,为孩子跨学科融合打下基础,让孩子能综合思考,去解决所遇到的问题。

2、动手体验

教育过程中,强调孩子的动手动脑能力,锻炼孩子的首脑眼协调能力,让孩子在自己熟悉的实践活动中学习数学知识,提升思维能力。

3、情境设定

结合知识、思维设定出符合孩子心理和认知的场景,让孩子置身于熟悉的生活场景,间接地进行实践,将来能更好地把课堂情景迁移到现实生活中进行实践。

4、协作与竞争

以小班分组互动式教学,强调孩子相互讨论沟通,相互协作,既锻炼孩子的语言表达能力,同样也让孩子进行思维碰撞,相互启发,还能增强孩子的竞争意识。

最后要跟讲的是,向孩子提问,需要拥有逻辑性,能够真正的启发孩子思考,能有效锻炼孩子的思维能力,让孩子成长为有用的、智慧的、复合型的人才。

阅读全文

与小学数学总结大全集相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99