1口算乘法
一个因数是2位数乘法 2.笔算
3.应用题和常见的数量关系
1 口算
除数是2位数的除法 2.笔算
3..应用题和常见的数量关系
混合运算及应用题 1混合运算
2应用题
B. 举例说明什么是数学认知结构和数学知识结构
一、数学认知结构的概念
简单地讲,数学认知结构就是学生头脑里获得的数学知识结构,只不过是一种经过学生主观改造后的数学知识结构,它是数学知识结构与学生心理结构相互作用的产物,其内容包括数学知识和这些数学知识在头脑里的组织方式与特征。
二、数学认知结构与数学知识结构的区别
数学认知结构和数学知识结构是两个不同的概念,它们之间既有密切的内在联系,又在严格的区别。两者的联系主要反映为学生的数学认知结构是由教材中的数学知识结构转化而来的,数学知识结构是数学认知结构赖以形成的物质基础和客观依据、两者的区别主要表现在以下几个方面:
l.概念的内涵不同。数学知识结构是由数学概念和命题构成的数学知识体系,它以最简约、最概括的方式反映了人类对世界数量关系和空间形式的认识成果,是科学真理的客观反映。而数学认知结构是一种经过学生主观改造的数学知识结构,它是数学知识结构与儿童心理结构高度融合的结果,其内容既反映了数学知识的客观性,又体现了认知主体的主观性。
2.信息的表达方式不同。数学知识结构和数学认知结构都是表达信息的,但两者在信息表达的方式上却有着明显的区别。教材中的数学知识结构是用文字和符号详尽表达有关世界数量关系和空间形式认识成果的信息的。它表现为一个逻辑严密、结构相对完善的数学知识体系。在这个体系内部知识的逻辑起点和知识表达形式以及前后内容之门的联系。在其载体——数学教材中都有明确而具体的表述。而学生头脑里的数学认知结构则主要是以语义的方式概括地、简约地表达信息的,并且通常以直觉的方式将信息储存在头脑里。这种表达方式表明,“认知结构已经将知识表征和个人智力活动方式融为一体”
3.结构的构造方式不同。数学具有高度的抽象性和严密的逻辑性,作为小学课程内容的数学虽然经过了教材编写者的教学法处理,但其内容仍然是一个较为严密的逻辑体系,前后内容连贯有序,整个结构相对完善。而学生头脑里的数学认知结构,内容之间并无严格的逻辑顺序,它既不是一种条理清楚的线性结构,也不是一种排列有序的网状结构。数学知识结构一旦被学生内化为认知结构以后,其内容之间的逻辑顺序和层次性往往就被淡化了,不同内容之间表现出一种相互融合的态势,其内部结构也不像数学教材知识结构那样清晰可辨。
4.结构的完备性不同。教材中的数学知识结构在内容上都是相对系统的、完备的、无缺口的,结构本身就涵盖了它的全部组成内容。如“分数的意义和性质”一知识结构,其内容就包括了分数的意义和单位,分数与除法的关系、分数的分类、假分数与带分数和整数的互化、分数的基本性质及约分和通分等,这些内容构成了一个完整的、无缺口的单元知识结构。而数学认知结构,由于学习者本身在接收、理解上的失误和学习后的遗忘等原因,在内容上常常是有缺口的,不完备的。如“分数的意义和性质”一知识结构转化成学生的数学认知结构以后,他们并不一定对每一内容都非常清晰,某些内容可能是模糊的,甚至是被完全遗忘了的。因而对学习主体来说它可能是一个内容不完备的数学知识结构。由此表明,学生的数学认知结构尽然是由教材知识结构转化而来的,但并不是教材上写了的和老师讲了的内容就一定能够完整无缺地接受和保存下来,在其内容上经常有可能出现某些缺口。
5.内容的科学性不同。数学教材知识结构中的内容都是经过严格逻辑论证和实践检验,能正确反映客观世界数量关系和空间形式普遍规律的科学真理,通常不存在什么错误。而数学认知结构中的内容,由于是数学知识结构与学生心理结构相结合的产物,是经过学生主观改造过的数学知识结构,所以它并不一定都是科学的。其内容可能是正确的,也可能是错误的,更可能是部分正确部分错误的。很明显,学生头脑里掌握的数学知识,其内容的科学性是有待检验的。我们不能把学生数学认知结构内容的科学性程度简单地伺数学教材知识结构内容的科学性程度等同起来,从而掩盖学生在学习过程中可能产生的某些错误认识。
(一)认知结构迁移理论是根据奥苏伯尔的有意义谚语学习理论(即同化论)发展而来的。
认知结构就是学生头脑中的知识结构。广义地说,它是学生头脑中全部内容和组织;狭义地说,它是学生在某一学科领域内观念的内容和组织。
奥苏伯尔认为,“为迁移而教”的实质是塑造学生良好的认知结构。可以从教学技术、教材内容及教材呈现这三个方面,确保学生形成良好的认知结构,以利于迁移。设计先行组织者先行组织者是在学习新材料之前呈现给学生的一种引导性学习材料,它以通俗的言语概括说明将要学习的新材料与认知结构中原有知识的联系,为新知识的学习提供认知框架。先行组织者可以是一条定律、一个概念或一段概括性的说明文字,也可以是形象化的模型。
C. 总结小学数学知识体系
数与代数 实践与综合运用 空间与图形 统计与概率
数的认识 数的运算 常见的量 式与方程 探索规律 图形的认识 测 量 图形和变换 图形与位置 数据统计初步 不确定现象 可能性
一上 10以内数的认识 10以内数的加减法 认识钟表 (分类) 数学乐园 认识立体图形 条形统计图雏形
11-20各数的认识 20以内的进位加法 (整时与半时) 我们的校园 认识平面图形
一下 100以内数的认识 20以内退位减法 元\角\分 找规律 摆一摆,想一想 图形的拼组 以一当一统计图
100以内加减法一 时与分 (图形和数) 小小商店 长\正方形特点
二上 100以内加减法二 数学广角 我长高了 不同方向看物 米和厘米的认识 以一当二统计图
乘法含义及表内乘 (排列\组合) 看一看,摆一摆 角的初步认识
二下 1000以内数认识 除法含义及表内除 克和千克认识 (解决问题) 找规律 剪一剪 锐角与钝角 平移与旋转 复式统计表
万以内数的认识 万以内加减法(一) (周期与递增) 有多重 以一当五统计图
三上 分数的初步认识 万以内加减法(二) 吨的认识 数学广角 填一填,说一说 四边形的认识 周长的含义及计算 可能与一定 可能性大小
有余数的除法 秒的认识 毫米\分米的认识
多位数乘一位数 时间的计算 (排列\组合) 掷一掷 千米的认识
三下 小数的初步认识 除数是一位数除法 年 月 日 (解决问题) 数学广角 制作年历 面积的含义 用八个方位词描述物体方向 简单数据分析
两位数乘两位数 24时记时法 (集合) 长\正方形面积计算 简单路线图
小数的简单加减 (等量代换) 设计校园 平均数
四上 亿以内的数 用计算器计算 数学广角 1亿有多大 直线\射线\角 角的度量 复式条形统计图
比亿大的数 三位数乘两位数 垂直与平行 画角
除数是两位数除法 (统筹原理) 你寄过贺卡吗 四边形与梯形
四下 小数的意义和性质 四则运算 数学广角 营养午餐 三角形的分类 根据方向和距离确定位置 单式折线统计图
运算定律与简便算 三角形的性质
小数的加减法 (植树问题) 小管家 图形的拼组
五上 小数乘\除法 用字母表示数 数学广角 量一量 找规律 观察物体 平行四边形面积 公平性
积\商近似数 (正\左\上面) 三角形面积
计算器探索规律 梯形面积
解决问题 解简易方程 (编码) 铺一铺 组合图形面积
五下 因数和倍数 同分母加减法 数学广角 粉刷围墙 认识长\正方体 体\容积意义 轴对称 众 数
2\5\3的倍数特征 异分母加减法 长\正方体表面积
质数和合数 分数加减混合运算 长\正方体体积 旋转90度 复式折线统计图
分数的意义和性质 (称找次品) 打电话
约分(最大公因数) 欣赏设计
通分(最小公倍数)
六上 百分数意义 分数乘\除法 数学广角 确定起跑线 圆的认识 圆的周长计算 用数对定位置 扇形统计图
百\分\小数互化 分\小数混合运算
解决问题
比和比的运用 (鸡兔同笼) 合理存款 圆的面积计算
六下 负数的认识 比例的意义和性质 数学广角 自行车里的数学 圆柱的认识 圆柱的表面积 扇形统计图分析
完整的数轴 正\反比例的意义
数的大小比较 比例的应用 (抽屉原理) 节约用水 圆锥的认识 圆柱体积计算 折线统计图分析
(图形放大与缩小) 圆柱的展开图 圆锥体积计算
D. 我要做一个小学数学知识结构图,一到六年纪的全要,最好在一张表上做出来,就是结构图那种.谢谢!!!
小学一到六年级数学知识结构图
E. 小学5、6年级数学知识结构表
五年级上册数学知识点
第一单元:《认识负数》
0即不是正数也不是负数,正数都大于0,负数都小于0。
第二单元:《多边形面积的计算》
1、一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。一个平行四边形能分割成两个完全相同的梯形;两个完全相同的梯形可能拼成一个平行四边形。等底等高的三角形的面积相等;一个三角形的面积是与它等底等高的平行四边形面积的一半。
2、平行四边形的面积 = 底×高 (用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,公式就可以写作:S = a h)。
3、三角形的面积= 底×高÷2 (用S表示三角形的面积,用a和h分别表示三角形的底和高,公式就可以写作: S = a h÷2)。
4、梯形的面积 = (上底+ 下底)×高÷2 (用S表示平行梯形的面积,用a 、b和h分别表示平行四边形的上、下底和高,公式就可以写作:S = (a + b ) h÷2)。
第三单元:《认识小数》
1、分母是10、100、1000……的分数都可以用小数表示,一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几……
2、小数点右边第一位是十分位,计数单位是十分之一(0.1);小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 每相邻的两个计数单位之间的进率都是10。
3、小数的末尾添上0或者去掉0,小数的大小不变,这是小数的性质。根据小数的性质,通常可以去掉小数末尾的0把小数化简。
4、把一个数改写成用“万”作单位的数,只要在这个数万位的右下角点上小数点,再在数的末尾添写“万”字。把一个数改写成用“亿”作单位的数,只要在这个数亿位的右下角点上小数点,再在数的末尾添写“亿”字。
第四单元:《小数加法和减法》
1、小数加减法的计算方法:相同数位对齐;从最低位算起:各位满十要进一;不够减时要向前一位借10再减。
如:
2、整数加法的运算定律对小数同样适用。
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
减法性质:a-b-c=a-(b+c)
第五单元:《找规律》
( )
( )
( )
第六单元:《解决问题的策略》
1、当长方形的周长不变时,长与宽长度相差的越大,这个长方形的面积就越小;长与宽长度相差的越小,这个长方形的面积就越大。
2、当长方形的面积不变时,长与宽长度相差的越大,这个长方形的周长就越长;长与宽长度相差的越小,这个长方形的周长就越短。
3、长方形的长 + 宽 = 长方形周长的一半
第七单元:《小数乘法和除法(一)》
1、把一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……;把一个小数的小数点向右移动了一位、两位、三位……这个小数就扩大了10倍、100倍、1000倍……。
2|、把一个小数除以10、100、1000 只要把这个小数的小数点向左移动一位、两位、三位……;把一个小数的小数点向左移动了一位、两位、三位……这个小数就缩小了10倍、100倍、1000倍……。
3、被除数不变,除数扩大(或缩小)几倍,商就随着缩小(或扩大)相同的倍数:除数不变,被除数扩大(或缩小)几倍,商就随着扩大(或缩小)相同的倍数。被除数与除数同时扩大(或缩小)相同的倍数,商不变。
第八单元:《公顷和平方千米》
测量和计算土地面积,通常用公顷作单位。边长是100米的正方形土地,面积是1公顷(ha)。测量和计算大面积土地,通常用平方千米作单位。边长是1000米的正方形土地,面积是1平方千米(km)。1公顷=10000平方米 ,1平方千米=1000000平方米=100公顷。
第九单元:《小数乘法和除法(二)》
1.小数乘法的计算算法,按整数乘法的计算方法计算。
2.观察因数中的小数位数共有几位,就从积的右边起数出相同的位数点上小数点。在积里点小数点时,位数不够的,要在前面用0补足。如:
0 . 07 8 4
3、小数除法的计算方法,按商不变的原理把除数转换成整数,再按整数除法的计算方法计算。
4、商的小数点要与被除数的小数点对齐;
5、有余数可以根据小数的性质补零继续除。
一个不是零的数乘一个小于1的数,得到的数会比原来小。例如:160×0.05=8 48×0.5=24 89×0.1=8.9 20×0.25=5
6、一个小数从小数部分的某一位起一个数字或者几个数字依次不断地重复出现这样的小数叫做循环小数。依次不断重复出现的一个数字或者几个数字是这个循环小数的循环节。如:2.56565656.…..
第十单元:《统计》
合计 男 女
总 计 39 18 21
航模小组 14 8 6
民乐小组 8 3 5
书法小组 7 3 4
美术小组 10 4 6
六年级上册数学知识点
χ第一单元:《方程》
1 aх±b=c 2 aх÷b=c 3 aх+ bх=c
如: 6х+5=23 2х÷5=4 2x+3x=10
解:6х+5-5=23-5 解:2х=4×5 解 5x=10
6х=18 2х=20 x=10÷5
Х=18÷6 х=20÷2 x=2
Х=3 х=10
4、用方程解应用题的关键是找出题中相等的数量关系。
如:大树高64米,比小树高度的2倍少22米,小树高多少米?(小树高度×2-22=大树高度)
第二单元:《分数乘法、分数除法》
1、求几个几分之几是多少,可以用加法或乘法计算。用乘法计算就是用整数分子与分子相乘,分母不变,结果能约分的要约分。
如:3个 是多少? ×3= + + = 或 ×3= =
2、求一个数的几分之几是多少,可以用乘法计算。分数乘分数就是用分子相乘的积作为分子,分母相乘的积作为分母,结果能约分的要约分。
如: 的 是多少? × = = =
3、乘积是1的两个数互为倒数。如: 和 互为倒数,也可以说成 的倒数是 。 如: × =1
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
如: ÷2= × = = =
5、分数的四则混合运算的运算顺序与整数的四则混合运算的运算顺序相同。
第三单元:《比》
1、比的意义 a:b 中的 “:”是比号,比号前面的数a叫做比的前项,比号后面的数b叫做比的后项。两个数的比表示两个数相除,比的前项除以比的后项所得的商叫比值。
如: 比 比值
3 : 5 =
比的前项 比的后项
2、两个数的比可以写成除法的形式,也可以写成分数的形式。三者的联系与区别如下表:
联
系 比 前项 比号 后项 比值 区
别 两个数的关系
除法 被除数 除号 除数 商 一种运算
分数 分子 分数线 分母 分数值 一个数
3、比的基本性质。比的前项和后项同时乘以或除以相同的数(0除外),比值不变,这就是比的基本性质。
4、把不是整数比的比化成整数比,再把不是最简整数比的化成最简整数比,这就叫化简比。如:
30:20=(30÷10):(20÷10) (除以最大公约数)
=3:2 (最简整数比)
2.4:3.6=(2.4×5):(3.6×5) (把小数化成整数)
=12:18
=(12÷6):(18÷6) (除以最大公约数)
=2:3 (最简整数比)
: = ×6: ×6 (乘以分母的最小公倍数)
=2:3 (最简整数比)
第四单元:《百分数》
1、百分数的意义。表示一个数是另一个数的百分之几的数,叫做百分数,百分数又叫做百分比或百分率,百分号为“%”。
如:32.5%读作百分之三十二点五。
2、百分数与分数的区别:意义不同;记法不同;分数既可作分率,也可作量,而百分数是分率,不能作量,后面不能带单位。
3、百分数、小数的互化。
百分数化为小数:去掉%号,将小数点向左移动两位,如:78%=0.78
小数化为百分数:小数点向右移动两位,在后面加上百分号,
如:1.02=102%
4、百分数、分数的互化。
分数化成百分数,用分子除以分母,得小数后,按小数化百分数的方法进行。如: =4÷5=0.8=80%
百分数化分数,写成分数形式,再进行化简,如:20%= =
5、求一个数是另一个数的百分之几,如甲是30,乙是50,甲是乙的百分之几?如:30÷50=0.6=60%
6、各种百分率的意义:
出勤率=出勤人数÷应出勤人数×100%
稻谷出米率=大米数量÷稻谷数量×100%
合格率=合格人数÷总人数×100%
第五单元:《替换和假设,就是把复杂问题变为简单问题》
1、替换。如:钢笔的价钱是铅笔的3倍。
策略:把钢笔换成3支铅笔,或把3支铅笔换成1支钢笔
2、假设。如:苹果每千克11元,梨每千克8元,共买了苹果和梨11千克,一共用100元,各买了多少千克?
策略1:假设每千克梨也是11元,就有
11×11-100=21(元)
21÷(11-8)=7(千克)
策略2:假设每千克苹果也是8元,就有
100-11×8=12(元)
12÷(11-8)=4(千克)
第六单元:《可能性》
第七单元:《空间与图形》
1、长方体的特点:长方体有6个面,12条棱,8个顶点,相对应的面完全相同,相对的棱长度相等。从不同的角度观察一个长方体,最多能同时看到3个面。
2、正方体的特点:正方体有6个面,12条棱,正方体的每个面都是完全相同的正方形,12条棱也相等。
3、表面积:长(正)方体6个面的总面积,叫做它的表面积。
(1)长方体(正方体)6个面的总面积,叫做它的表面积,表面积的单位是“平方”。
(2)长方体表面积=(长×宽+长×高+宽×高)×2
用字母表示 S=2(ab+ah+bh)
正方体表面积=棱长×棱长×6
用字母表示 S=6a²
4、 体积和容积
(1)、物体所占空间的大小叫物体的体积。常用的体积单位有立方厘米(cm³)、立方分米(dm³)、立方米(m³)。1立方米=1000立方分米, 1立方分米=1000立方厘米。
(2)、容器所能容纳物体的体积,叫做这个容器的容积。常用的容积单位有升、毫升。1升=1000毫升, 1立方分米=1升=1000毫升,1毫升=1立方厘米。
(3)、长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
长方体(正方体)的体积=底面积×高
(4)、长(正)方体容积的计算与体积求法相同,但长度要取内沿。
F. 小学数学知识的逻辑结构
小学知识还是相对来说容易理解的,只要你中间不脱节,不拉下课就行。如果自己觉得那方面是自己的弱项,可以有针对性的加强训练。
G. 最新实验人教版小学三年级数学上册知识结构体系图
自己看吧,该有的都有吧