导航:首页 > 小学全识 > 全国中小学生联赛

全国中小学生联赛

发布时间:2020-12-03 03:19:13

A. 中国的足球金子塔想建立好 必须队低级别联赛也要大幅度报道 大家说需不需要呢

日本现在的小学生联赛都比中超的技战术含量高!
我认为应当大量引进韩国籍教练来中国教基层版足球,只有提权高基层教练水平、踢球有保障,更多的家长才能让孩子踢球,踢球才会有出路
国家队也别学什么西班牙了,就学韩国!
球员也别去什么欧洲踢球,就像人家黄博文那样老老实实去韩国踢
始终把韩国足球当成中国足球的老师 中国足球才能进步!
至于日本足球 中日两国国情相差太大 日本和南美在历史上的那种渊源是中国足球没有的 所以没法学

B. 参加全国数学奥林匹克竞赛的步骤

这是一个相当严格的过程,首先要在四月或五月份参加省级的预赛,然后预赛通过的人参加每年十月第二个星期天举行的全国高中数学联赛,一般省内会选择省里的前几名参加来年一月的冬令营即全国决赛。

每年大约有来自全国二百多名同学参加冬令营,一般取成绩前三十名左右选入国家集训队,在三月份中旬到四月上旬进行集训队的培训,经过六次集训队的测试和国家队选拔考试,取成绩的前六名参加本年七月的国际数学奥林匹克竞赛。

(2)全国中小学生联赛扩展阅读

竞赛活动性质为社会公益性活动,活动目的是为培养广大少年儿童学习数学、热爱数学的热情与兴趣,活动组织分三个部分:

1, 各地区分赛(海选赛、晋级赛)主要体现广泛参与性,通过大范围的奖项设置比例,鼓励与激发大多数参赛学生学习数学的兴趣,从而实现赛事活动的广泛社会意义。

2, 每年一次举办的全国总决赛主要体现赛事的高端精英选拔,将全国各地分赛区竞赛中,成绩优异的选手,集中在一起进行竞赛、展示、合作等相关交流活动,其活动意义选拔优秀的中国集训队选手备战世界奥林匹克数学竞赛世界总决赛。

3, 通过全国总决赛的选拔,各个年级组中前五名选手,共计35名精英选手,将进入(中国区)集训队,通过封闭式的强化学习与训练,培养与选拔每个年级最优秀的选手组成中国区代表对出战世界奥林匹克数学竞赛世界总决赛,展示自我,为国争光。

C. 全国初中数学联赛用什么书辅导好

分年级系统学习抄:《奥袭数教程》七年级、八年级、九年级
分专题突破:《奥林匹克书学小丛书 初中卷》挑竞赛难点学
高强度、多题量训练:《多功能题典 初中数学竞赛》
临考抱佛脚:《初中数学联赛考前辅导》
......天下书多的是,不仅限于此
以上书籍你网络一下,或者在当当搜一搜就可以知道了。同时你可以买一下往年的真题之类的。数学竞赛主要靠的是一丁点天赋和大量的勤奋,当然如果你有一个专业、经验丰富、指导过多年竞赛的老师的话上面所提的两个因素就需要的少一些。如果你不是从初一就开始有准备这个比赛的话,或者说每周、每天、每月不能保证有稳定的时间进行数学竞赛的学习,或者也没有参加学而思之类的辅导班,想在这方面有所成就,很难!当然,不排除你很有天赋。以上属个人意见

D. 2012全国联赛数学试题 一、选择题(共5小题,每小题7分,共35分) 1.如果实数a,b,c在数轴上的位置如图所

竞赛方法
不妨令b=-2,a=-1,c=1
代入求得等于1
即为-a啦

普遍方法
a<0则根号版a²=-a
a+b<0则/a+b/=-(a+b)
c-a>0,则根号(权c-a)²=c-a
/c/>/b/则/b+c/=b+c
从而原式=-a-(a+b)+c-a+b+c=-a

E. 世界女排联赛2019小组赛A组中国队14号是谁

2019世界女排联赛复小组赛A组中制国队14号是副攻手郑益昕。

郑益昕是一名全能副攻,在南京总决赛由当胡铭嫒替补打成了主力,对欧美强队下球率高。郑益昕蜕变得益于她技术全面,球商高以及克苦训练,手臂肌肉,马甲线都练出来了。郑益新不仅漂亮,而且浑身充满灵气,在赛场上会显出一股霸气,更显女排神气。

如今国家队只有16名球员集训,而副攻更是只有颜妮,袁心玥,王媛媛和郑益昕,这对郑益昕来说是非常难得机会,不出意外的话,接下来的奥预赛和世界杯名单里将会有她的名字。

F. 2008年全国初中数学联赛武汉市选拔赛CASIO杯试题详解

参考答案
一 、选择题(本大题10小题,每小题5分,共50分)
题号 1 2 3 4 5 6 7 8 9 10
答案 C D D A D B A D B D
二、填空题(本大题共4小题,内每小题5分,共20分)容
11. 12. 13. 500 14.
三、解答题(本大题共50分)
15、(本题25分)
(1)当∠ABM>∠CBM时, =
(2)当∠ABM=∠CBM时,不符合题意
(3))当∠ABM<∠CBM时, =
16、(本题25分)
把方程(1)代入方程(2)得关于y的方程
则根据题意得△ ,即 ,则 ,即
,所以-1≤a≤2,则整数a的值为-1,0,1,2.

G. 中国足球队输给战乱国家,小国叙利亚,他们的联赛都没有,而中国有那么投钱的多级联赛,如何看待这个问题

关于“中国有那么投钱的多级联赛”是因为中国人口多,相应球迷专数量庞大,足球是商属业化运作,每年球队有广告收入,门票收入,转播费分成……只要有人看,不论输赢都是赚钱的。
关于“输给叙利亚”这个部分问题的答案就非常有深意啦,因为男足不像国乒那么残忍,有强烈的人道主义精神:
“叙利亚对中国这次比赛提高了奖金,逼平韩国能获得300美元,而打赢中国,每人的奖金将超过1000美元!你不要小看这1000美元啊,有这1000美元,也许就能逃离战乱的家园,就能换得家人的安全。1000美元且不说对国脚们,就是对一般老百姓,还不够交房税,或车税的。但对人家却无比的珍贵。”

H. 全国初中数学联赛试题

2001年全国初中数学联赛第一试
一、选择题(每小题7分,共42分)
1、a,b,c为有理数,且等式 a + b√2 + c√3 = √(5 + 2√6) 成立,则 2a + 999b + 1001c 的值是( )
(A)1999 (B)2000 (C)2001 (D)不能确定
2、若ab≠1,且有 5a2 + 2001a + 9 = 0及 9b2 + 2001b + 5 = 0,则 a/b 的值是( )
(A)9/5 (B)5/9 (C)-2001/5 (D)-2001/9
3、已知在△ABC中,∠ACB=900,∠ABC=150,BC=1,则AC的长为( )
(A)2 + √3 (B)2 - √3 (C)3/10 (D)√3 - √2
4、在△ABC中,D是边AC上的一点,下面四种情况中,△ABD∽△ACB不一定成立的情况是( )
(A)AD·BC = AB·BD (B)AB2 = AD·AC (C)∠ABD = ∠ACB (D)AB·BC = AC·BD
5、①在实数范围内,一元二次方程 ax2 + bx + c = 0 的根为 x = -b/2a ± √(b2-4ac)/2a;②在△ABC中,若 AC2 + BC2 > AB2,则△ABC是锐角三角形;③在△ABC和△A'B'C'中,a,b,c分别为△ABC的三边,分别为的三边,若a>a',b>b',c>c',则△ABC的面积S大于△A'B'C'的面积S'。以上三个命题中,假命题的个数是( )
(A)0(B)1(C)2(D)3
6、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )
(A)522.8元(B)510.4元(C)560.4元(D)472.8
二、填空题(每小题7分,共28分)
1、已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=1500,且P到Q的距离为2,则Q的坐标为______。
2、已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为 ______ 。
3、已知x,y是正整数,并且xy+x+y=23 则x2+y2= ______ 。(非原题)
4、一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为 _______ 。

2008年全国初中数学联赛
2008年4月13日上午8:30—9:30
一、选择题:(本题满分42分,每小题7分)
1、设a 2 + 1 = 3 a,b 2 + 1 = 3 b,且a ≠ b,则代数式 + 的值为( )
(A)5 (B)7 (C)9 (D)11
2、如图,设AD,BE,CF为△ABC的三条高,若AB = 6,BC = 5,EF = 3,则线段BE的长为( )
(A) (B)4 (C) (D)
3、从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( )
(A) (B) (C) (D)
4、在△ABC中,∠ABC = 12°,∠ACB = 132°,BM和CN分别是这两个角的外角平分线,且点M,N分别在直线AC和直线AB上,则( )
(A)BM > CN (B)BM = CN (C)BM < CN (D)BM和CN的大小关系不确定
5、现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r,则r的最小值为( )
(A)( ) 3 (B)( ) 4 (C)( ) 5 (D)
6、已知实数x,y满足( x – ) ( y – ) = 2008,
则3 x 2 – 2 y 2 + 3 x – 3 y – 2007的值为( )
(A)– 2008 (B)2008 (C)– 1 (D)1
二、填空题:(本题满分28分,每小题7分)
1、设a = ,则 = 。
2、如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM = ,∠MAN = 135°,则四边形AMCN的面积为 。
3、已知二次函数y = x 2 + a x + b的图象与x轴的两个交点的横坐标分别为m,n,且| m | + | n | ≤ 1。设满足上述要求的b的最大值和最小值分别为p,q,则| p | + | q | = 。
4、依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 。
答案: B、D、C、B、B、D;– 2、 、 、1。

2003年全国初中数学联赛
一、选择题(本题满分42分,每小题7分)
1. 2√(3-2√2) + √(17-12√2) 等于
A.5-4√2 B.4√2-1 C.5 D.1
2.在凸10边形的所有内角中,锐角的个数最多是
A.0 B.1 C.3 D.5
3.若函数 y = kx (k>0) 与函数 y = 1/x 的图象相交于A,C两点,AB垂直x轴于B,则△ABC的面积为
A.1 B.2 C.k D.k2
4.满足等式 x√y + y√x - √(2003x) - √(2003y) + √(2003xy) = 2003 的正整数对的个数是
A.1 B.2 C.3 D.4
5.设△ABC的面积为1,D是边AB上一点,且 AD/AB = 1/3.若在边AC上取一点E,使四边形DECB的面积为 3/4,则 CE/EA 的值为
A. 1/2 B.1/3 C.1/4 D.1/5
6.如图,在平行四边形ABCD中,过A,B,C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为
A.3 B.4 C.15/4 D.16/5
二、填空题(本题满分28分,每小题7分)
1.抛物线 y = ax2 +bx +c 与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=__________.
2.设 m 是整数,且方程 3x2 + mx - 2 = 0 的两根都大于 -9/5 而小于 3/7,则 m = ____________.
3.如图 AA',BB',分别是∠EAB,∠DBC的平分线.若 AA' = BB' = AB,则∠BAC的度数为_____________.
4.已知正整数a,b之差为120,它们的最小公倍数是其最大公约数的105倍,那么a,b中较大的数是_________.
2007年全国初中数学联赛
第一试
一、选择题(每小题7分,共42分)
1.已知 满足 则 的值为( ).
(A)1 (B) (C) (D)
2.当 分别取值 2,…,2006,2007时,计算代数式 的值,将所得的结果相加,其和等于( ).
(A)-1 (B)l (C)0 (D)2007
3.设 是 的三边长,二次函数 在 时取最小值 .则△ABC是( ).
(A)等腰三角形 (B)锐角三角形
(C)钝角三角形 (D)直角三角形
4.已知锐角△ABC的顶点A到垂心H的距离等于它的外接圆的半径.则∠A的度数是( ).
(A)30° (B)45° (C)60° (D)75°
5.设K是△ABC内任意一点,△KAB、△KBC、△KCA的重心分别为D、E、F.则S△DEF:S△ABC的值为( ).
(A) (B) (C) (D)
6.袋中装有5个红球、6个黑球、7个白球.现从袋中摸出15个球,摸出的球中恰好有3个红球的概率是( ).
(A) (B) (C) (D)

二、填空题(每小题7分,共28分)
1.设 , 是 的小数部分, 是 的小数部分.则 .
2.对于一切不小于2的自然数 ,关于 的一元二次方程 的两个根记作 .则
= .
3.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F.则BE-BF的值为 。
4.若 和 均为四位数,且均为完全平方数,则整数 的值为 。
第二试
A卷
一、(20分)设 为正整数,且 如果对一切实数 ,二次函数
的图像与 轴的两个交点间的距离不小于 ,求 的值.

二、(25分)如图l,四边形ABCD是梯形,点E是上底边AD上一点,CE的延长线与BA的延长线交于点F.过点E作BA的平行线交CD的延长线于点M,BM与AD交于点N.证明:∠AFN=∠DME.

三、(25分)已知 是正整数.如果关于 的方程 的根都是整数,求 的值及方程的整数根.
B卷
一、(20分)设 为正整数,且 二次函数 的图像与 轴的两个交点间的距离为 ,二次函数 的图像与 轴的两个交点间的距离为 .如果 对一切实数 恒成立,求 的值。
二、(25分)同A卷第二题.
三、(25分)设 是正整数,二次函数 反比例函数 .如果两个函数的图像的交点都是整点(横、纵坐标都是整数的点),求 的值.
C卷
一、(20分)同B卷第一题.
二、(25分)同A卷第二题.
三、(25分)设 是正整数.如果二次函数 和反比例函数 的图像有公共整点(横、纵坐标都是整数的点),求 的值和对应的公共整点.
2006年全国初中数学联赛
第一试
一、选择题(每小题7分,共42分)
1.已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点用S、p分别表示四边形ABCD的面积和周长;S1、p1,分别表示四边形EFGH的面积和周长.设 .则下面关于 的说法中,正确的是( ).
(A) 均为常值 (B) 为常值, 不为常值
(C) 不为常值, 为常值 (D) 均不为常值
2.已知 为实数,且 是关于 的方程 的两根.则 的值为( ).
(A) (B) (C) (D)1
3.关于 的方程 仅有两个不同的实根.则实数 的取值范围是( ).
(A)a>0 (B)a≥4 (C)2<a<4 (D)0<a<4
4.设 则实数 的大小关系是( ).
(A) (B) (C) (D)
5. 为有理数,且满足等式 ,则 的值为( ).
(A)2 (B)4 (C)6 (D)8
6.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,….则这列数中的第158个数为( ).
(A)2000 (B)2004 (C)2008 (D)2012
二、填空题(每小题7分,共28分)
1.函数 的图像与 轴交点的横坐标之和等于 .
2.在等腰 中,AC=BC=1,M是BC的中点,CE⊥AM于点E,交AB于点F,则S△MBF= 。
3.使 取最小值的实数 的值为 .
4.在平面直角坐标系中,正方形OABC的顶点坐标分别为O(0,0)、A(100,0)、B(100,100)、C(0,100).若正方形0ABC内部(边界及顶点除外)一格点P满足 。
就称格点P为“好点”.则正方形OABC内部好点的个数为 .
注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.
第二试
A卷
一、(20分)已知关于 的一元二次方程 无相异两实根.则满足条件的有序正整数组 有多少组?
二、(25分)如图l,D为等腰△ABC底边BC的中点,E、F分别为AC及其延长线上的点.已知∠EDF=90°.ED=DF=1,AD=5.求线段BC的长.

三、(25分)如图2,在平行四边形ABCD中,∠A的平分线分别与BC、DC的延长线交于点E、F,点O、O1分别为△CEF、△ABE的外心.求证:
(1)O、E、O1三点共线;
(2)
B卷
一、(20分)同A卷第一题.
二、(25分)同A卷第二题.
三、(25分)如图2,在平行四边形ABCD中,∠A的平分线分别与BC、DC的延长线交于点E、F,点O、O1分别为△CEF、△ABE的外心.
(1)求证:O、E、01三点共线;
(2)若 求 的度数.
C卷
一、(20分)同A卷第二题.
二、(25分)同B卷第三题.
三、(25分)设 为正整数,且 .在平面直角坐标系中,点 和点 的连线段通过 个格点 .证明:
(1)若 为质数,则在原点O(0,0)与点 的连线段 上除端点外无其他格点;
(2)若在原点O(0,0)与点 的连线段 上除端点外无其他格点,则p为质数.
回答者: mian500 - 助理 二级 4-4 17:37
2001年全国初中数学联赛第一试
一、选择题(每小题7分,共42分)
1、a,b,c为有理数,且等式 a + b√2 + c√3 = √(5 + 2√6) 成立,则 2a + 999b + 1001c 的值是( )
(A)1999 (B)2000 (C)2001 (D)不能确定
2、若ab≠1,且有 5a2 + 2001a + 9 = 0及 9b2 + 2001b + 5 = 0,则 a/b 的值是( )
(A)9/5 (B)5/9 (C)-2001/5 (D)-2001/9
3、已知在△ABC中,∠ACB=900,∠ABC=150,BC=1,则AC的长为( )
(A)2 + √3 (B)2 - √3 (C)3/10 (D)√3 - √2
4、在△ABC中,D是边AC上的一点,下面四种情况中,△ABD∽△ACB不一定成立的情况是( )
(A)AD·BC = AB·BD (B)AB2 = AD·AC (C)∠ABD = ∠ACB (D)AB·BC = AC·BD
5、①在实数范围内,一元二次方程 ax2 + bx + c = 0 的根为 x = -b/2a ± √(b2-4ac)/2a;②在△ABC中,若 AC2 + BC2 > AB2,则△ABC是锐角三角形;③在△ABC和△A'B'C'中,a,b,c分别为△ABC的三边,分别为的三边,若a>a',b>b',c>c',则△ABC的面积S大于△A'B'C'的面积S'。以上三个命题中,假命题的个数是( )
(A)0(B)1(C)2(D)3
6、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )
(A)522.8元(B)510.4元(C)560.4元(D)472.8
二、填空题(每小题7分,共28分)
1、已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=1500,且P到Q的距离为2,则Q的坐标为______。
2、已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为 ______ 。
3、已知x,y是正整数,并且xy+x+y=23 则x2+y2= ______ 。(非原题)
4、一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为 _______ 。

2008年全国初中数学联赛
2008年4月13日上午8:30—9:30
一、选择题:(本题满分42分,每小题7分)
1、设a 2 + 1 = 3 a,b 2 + 1 = 3 b,且a ≠ b,则代数式 + 的值为( )
(A)5 (B)7 (C)9 (D)11
2、如图,设AD,BE,CF为△ABC的三条高,若AB = 6,BC = 5,EF = 3,则线段BE的长为( )
(A) (B)4 (C) (D)
3、从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是( )
(A) (B) (C) (D)
4、在△ABC中,∠ABC = 12°,∠ACB = 132°,BM和CN分别是这两个角的外角平分线,且点M,N分别在直线AC和直线AB上,则( )
(A)BM > CN (B)BM = CN (C)BM < CN (D)BM和CN的大小关系不确定
5、现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r,则r的最小值为( )
(A)( ) 3 (B)( ) 4 (C)( ) 5 (D)
6、已知实数x,y满足( x – ) ( y – ) = 2008,
则3 x 2 – 2 y 2 + 3 x – 3 y – 2007的值为( )
(A)– 2008 (B)2008 (C)– 1 (D)1
二、填空题:(本题满分28分,每小题7分)
1、设a = ,则 = 。
2、如图,正方形ABCD的边长为1,M,N为BD所在直线上的两点,且AM = ,∠MAN = 135°,则四边形AMCN的面积为 。
3、已知二次函数y = x 2 + a x + b的图象与x轴的两个交点的横坐标分别为m,n,且| m | + | n | ≤ 1。设满足上述要求的b的最大值和最小值分别为p,q,则| p | + | q | = 。
4、依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 。
答案: B、D、C、B、B、D;– 2、 、 、1。

2003年全国初中数学联赛
一、选择题(本题满分42分,每小题7分)
1. 2√(3-2√2) + √(17-12√2) 等于
A.5-4√2 B.4√2-1 C.5 D.1
2.在凸10边形的所有内角中,锐角的个数最多是
A.0 B.1 C.3 D.5
3.若函数 y = kx (k>0) 与函数 y = 1/x 的图象相交于A,C两点,AB垂直x轴于B,则△ABC的面积为
A.1 B.2 C.k D.k2
4.满足等式 x√y + y√x - √(2003x) - √(2003y) + √(2003xy) = 2003 的正整数对的个数是
A.1 B.2 C.3 D.4
5.设△ABC的面积为1,D是边AB上一点,且 AD/AB = 1/3.若在边AC上取一点E,使四边形DECB的面积为 3/4,则 CE/EA 的值为
A. 1/2 B.1/3 C.1/4 D.1/5
6.如图,在平行四边形ABCD中,过A,B,C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为
A.3 B.4 C.15/4 D.16/5
二、填空题(本题满分28分,每小题7分)
1.抛物线 y = ax2 +bx +c 与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=__________.
2.设 m 是整数,且方程 3x2 + mx - 2 = 0 的两根都大于 -9/5 而小于 3/7,则 m = ____________.
3.如图 AA',BB',分别是∠EAB,∠DBC的平分线.若 AA' = BB' = AB,则∠BAC的度数为_____________.
4.已知正整数a,b之差为120,它们的最小公倍数是其最大公约数的105倍,那么a,b中较大的数是_________.
2007年全国初中数学联赛
第一试
一、选择题(每小题7分,共42分)
1.已知 满足 则 的值为( ).
(A)1 (B) (C) (D)
2.当 分别取值 2,…,2006,2007时,计算代数式 的值,将所得的结果相加,其和等于( ).
(A)-1 (B)l (C)0 (D)2007
3.设 是 的三边长,二次函数 在 时取最小值 .则△ABC是( ).
(A)等腰三角形 (B)锐角三角形
(C)钝角三角形 (D)直角三角形
4.已知锐角△ABC的顶点A到垂心H的距离等于它的外接圆的半径.则∠A的度数是( ).
(A)30° (B)45° (C)60° (D)75°
5.设K是△ABC内任意一点,△KAB、△KBC、△KCA的重心分别为D、E、F.则S△DEF:S△ABC的值为( ).
(A) (B) (C) (D)
6.袋中装有5个红球、6个黑球、7个白球.现从袋中摸出15个球,摸出的球中恰好有3个红球的概率是( ).
(A) (B) (C) (D)

二、填空题(每小题7分,共28分)
1.设 , 是 的小数部分, 是 的小数部分.则 .
2.对于一切不小于2的自然数 ,关于 的一元二次方程 的两个根记作 .则
= .
3.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F.则BE-BF的值为 。
4.若 和 均为四位数,且均为完全平方数,则整数 的值为 。
第二试
A卷
一、(20分)设 为正整数,且 如果对一切实数 ,二次函数
的图像与 轴的两个交点间的距离不小于 ,求 的值.

二、(25分)如图l,四边形ABCD是梯形,点E是上底边AD上一点,CE的延长线与BA的延长线交于点F.过点E作BA的平行线交CD的延长线于点M,BM与AD交于点N.证明:∠AFN=∠DME.

三、(25分)已知 是正整数.如果关于 的方程 的根都是整数,求 的值及方程的整数根.
B卷
一、(20分)设 为正整数,且 二次函数 的图像与 轴的两个交点间的距离为 ,二次函数 的图像与 轴的两个交点间的距离为 .如果 对一切实数 恒成立,求 的值。
二、(25分)同A卷第二题.
三、(25分)设 是正整数,二次函数 反比例函数 .如果两个函数的图像的交点都是整点(横、纵坐标都是整数的点),求 的值.
C卷
一、(20分)同B卷第一题.
二、(25分)同A卷第二题.
三、(25分)设 是正整数.如果二次函数 和反比例函数 的图像有公共整点(横、纵坐标都是整数的点),求 的值和对应的公共整点.
2006年全国初中数学联赛
第一试
一、选择题(每小题7分,共42分)
1.已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点用S、p分别表示四边形ABCD的面积和周长;S1、p1,分别表示四边形EFGH的面积和周长.设 .则下面关于 的说法中,正确的是( ).
(A) 均为常值 (B) 为常值, 不为常值
(C) 不为常值, 为常值 (D) 均不为常值
2.已知 为实数,且 是关于 的方程 的两根.则 的值为( ).
(A) (B) (C) (D)1
3.关于 的方程 仅有两个不同的实根.则实数 的取值范围是( ).
(A)a>0 (B)a≥4 (C)2<a<4 (D)0<a<4
4.设 则实数 的大小关系是( ).
(A) (B) (C) (D)
5. 为有理数,且满足等式 ,则 的值为( ).
(A)2 (B)4 (C)6 (D)8
6.将满足条件“至少出现一个数字0且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,….则这列数中的第158个数为( ).
(A)2000 (B)2004 (C)2008 (D)2012
二、填空题(每小题7分,共28分)
1.函数 的图像与 轴交点的横坐标之和等于 .
2.在等腰 中,AC=BC=1,M是BC的中点,CE⊥AM于点E,交AB于点F,则S△MBF= 。
3.使 取最小值的实数 的值为 .
4.在平面直角坐标系中,正方形OABC的顶点坐标分别为O(0,0)、A(100,0)、B(100,100)、C(0,100).若正方形0ABC内部(边界及顶点除外)一格点P满足 。
就称格点P为“好点”.则正方形OABC内部好点的个数为 .
注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.
第二试
A卷
一、(20分)已知关于 的一元二次方程 无相异两实根.则满足条件的有序正整数组 有多少组?
二、(25分)如图l,D为等腰△ABC底边BC的中点,E、F分别为AC及其延长线上的点.已知∠EDF=90°.ED=DF=1,AD=5.求线段BC的长.

三、(25分)如图2,在平行四边形ABCD中,∠A的平分线分别与BC、DC的延长线交于点E、F,点O、O1分别为△CEF、△ABE的外心.求证:
(1)O、E、O1三点共线;
(2)
B卷
一、(20分)同A卷第一题.
二、(25分)同A卷第二题.
三、(25分)如图2,在平行四边形ABCD中,∠A的平分线分别与BC、DC的延长线交于点E、F,点O、O1分别为△CEF、△ABE的外心.
(1)求证:O、E、01三点共线;
(2)若 求 的度数.
C卷
一、(20分)同A卷第二题.
二、(25分)同B卷第三题.
三、(25分)设 为正整数,且 .在平面直角坐标系中,点 和点 的连线段通过 个格点 .证明:
(1)若 为质数,则在原点O(0,0)与点 的连线段 上除端点外无其他格点;
(2)若在原点O(0,0)与点 的连线段 上除端点外无其他格点,则p为质数.

I. 中国的小足球运动员如何选拔

从各个足球培训基地选,潍坊有一个,还有就是从各个联赛的后备培训基地选

J. 为什么英国这么小,有十多个级别的足球联赛。中国就不行

英格兰联赛有七个级别
苏格兰联赛有三个级别
威尔士联赛有两个级别
北爱尔兰联赛有三个级别

阅读全文

与全国中小学生联赛相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99