① 小学生数学手抄报应该怎样做
小学生手抄报的形式多种多样,内容也关乎很多,今天就来说说如何做好一份小学生数学手抄报。
内容上
只要和数学有关的,都可以拿来做手抄报。可以找一些数字歌和一些关于奥数相关的资料,再进行加工一下就有你所要的东西了!
比如,你可以写写数学家的故事、数学文化、数学小笑话、数学趣题妙解,还可以是数学的故事,学习数学中发生的故事等等,内容很丰富。
版面上
1、版面设计
版面设计是出好手抄报的重要环节。
要设计好版面,须注意以下几点:
(1)明确本期手抄报的主要内容是什么,选用有一定意义的报头(即报名)。一般报头应设计在最醒目的位置;
(2)通读所编辑或撰写的文章并计算其字数,根据文章内容及篇幅的长短进行编辑(即排版)。一般重要文章放在显要位置(即头版);
(3)要注意长短文章穿插和横排竖排相结合,使版面既工整又生动活泼;
(4)排版还须注意:字的排列以横为主以竖为辅,行距要大于字距,篇与篇之间要有空隙,篇与边之间要有空隙,且与纸的四周要有3CM左右的空边。另外,报面始终要保持干净、整洁。
2、报头
报头起着开门见山的作用,必须紧密配合主题内容,形象生动地反映手抄报的主要思想。报名要取得有积极、健康、富有意义的名字。
报头一般由主题图形,报头文字和几何形体色块或花边而定,或严肃或活泼、或方形或圆形、或素雅或重彩。
报头设计应注意:
(1)构图要稳定,画面结构要紧凑,报头在设计与表现手法上力求简炼,要反映手抄报的主题,起“一目了然”之效;
(2)其字要大,字体或行或楷,或彩色或黑白;
(3)其位置有几种设计方案:一是排版设计为两个版面的,应放在右上部;二是排版设计为整版的,则可或正中或左上或右上。一般均设计在版面的上部,不宜放在其下端。
3、题头
题头(即题花)一般在文章前端或与文章题图结合在一起。设计题头要注意以题目文字为主,字略大。装饰图形须根据文章内容及版面的需要而定。文章标题字要书写得小于报题的文字,要大于正文的文字。总之,要注意主次分明。
4、插图与尾花
插图是根据内容及版面装饰的需要进行设计,好的插图既可以美化版面又可以帮助读者理解文章内容。插图及尾花占的位置不宜太大,易显得空且乱。尾花大都是出于版面美化的需要而设计的,多以花草或几何形图案为主。插图和尾花并不是所有的文章都需要的,并非多多益善,应得“画龙点睛”之效。
5、花边
花边是手抄报中不可少的。有的报头、题头设计可用花边;重要文章用花边作外框;文章之间也可用花边分隔;有的整个版面上下或左右也可用花边隔开。在花边的运用中常用的多是直线或波状线等。
二、报头画、插图与尾花的表现手法
报头画、插图与尾花的表现手法大致可分为线描画法和色块画法两种。
1、线描画法
要求形象简炼、概括,用线准确,主次分明。作画时要注意一定的步骤:
(1)一般扼要画出主线----确定角度、方向和大小;
(2)再画出与图相关的比例、结构及透视;
(3)刻画细部,结合形体结构、构图、色调画出线条的节奏变化;
(4)最后进行整理,使画面完整统一。
2、色块画法
除要求造型准确外,还须善于处理色块的搭配和变化关系,而这些关系的处理要从对象的需要出发,使版面色彩丰富。作画时,可先画铅笔稿(力求造型准确),再均匀平涂大色块;后刻画细部;最后进行修整,使之更加统一完美。
线描画法与色块画法,通常是同时使用,可以是多色亦可单色。不管是线描还是色块画法,最好不要只用铅笔去画。版面上的图形或文字不能剪贴。
采纳啊!!!!!!
② 小学二年级,手抄报,数学小知识
在古代,人们在日常生活中以常需要量物体的长短、田块的大小,需要知道物品的轻重等,这就逐渐有了长度、面积、重(质)量等量的概念。 测量长度时,开始人们用身体的某一部分,如一度、一步来测量。后来发明了一些简单的工具,统一了测量的标准。现在又有了各种各样的尺,测量更方便了。 2.我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“2 4”,中间空着,把2004,写成“2 4”,怎么区别中间有几个零呢?为了避免看不清,就用点“·”来表示,204写成“2·4”,那不和小数混淆了?直到公元876年才把“0”确定下来。 我国却在1240年前就已创造了“0”,我国的零,当时是“○”,它是根据写字时缺字用“□”来表示缺字,“0”表示这个数没有,或这个数位上没有,用“○”表示,随着人们长期不断地记数,慢慢发展演变,最后确定为今天的“0”。因此以“0”作为零是我国古代数学家的一项杰出贡献。 3.及是世界上文化发达最早的地区之一。它位于尼罗河两岸。大约公元前3200年,经过近800年的斗争,埃及全境实现了统一。由于尼罗河定期泛滥,人们为了丈量河水泛滥后的土地,由此产生了埃及古老的数学。现在我们对古埃及数学的认识,主要源于两部用象形文字写成的书。一本是伦敦本,一本是莫斯科本。伦敦本是在古埃及都城的废墟中发现的,1858年被英国人莱因特所购得,因此又叫莱因特纸草书。纸草是盛产在尼罗河三角洲的一种水生植物,形状象芦苇,当时人们把它的茎逐层撕成薄片,就可以写字。这本书长550厘米,宽33厘米,是埃及僧人阿默士所著,成书年代约在公元前1700年,距现在约有3700多年。书名为《阐明对象中一切黑暗的、秘密事物的指南》,全书共分三章:一是算术,二是几何,三是杂题;共有题目85个,大概是当时的一种实用计算手册。莫斯科本是俄罗斯收藏者在1893年获得的,1912年转为莫斯科博物馆所有。它的成书年代大约是公元前1850年。书中记载了25个问题,可惜缺少卷首,不知书名。在这两部纸草书中,不但有一元一次方程的计算,还有当时埃及分数的算法。在应用题中,涉及粮食、酒类、动物饲养及谷物的贮藏等问题。特别是有一些算题出得非常精彩。这说明,在距今4000年前,人们就已经应用数学来解决生产、生活中的实际问题了。 4.中国人从古到今都重视“3”的哲学价值。以“3”论人,有三皇、三苏;以“3”论文,有“三部曲”、“三言”;以“3”论花木,有园林三宝——树中银杏、花中牡丹、草中兰。人们还以“3”论学习。如宋代哲学家朱熹认为读书要三到:心到、眼到、口到。 外国人也极其重视“3”。早在公元前5世纪,古希腊哲学家毕达哥拉斯就把“3”称为完美的数字,因为它体现了“开始、中期和终结”,具备神性。在古希腊、罗马神话中,世界由三位大神——主神朱庇特,海神尼普顿,冥神普路托掌管。朱庇特手中拿的是三叉闪电,尼普顿手持三叉戟,普路托手牵一条三头狗。希腊神话中传说的女神也有三位:命运女神、复仇女神和美惠女神。 古代的西方人认为,世界由三者合成——大地、海洋、天空;自然界有三项内容——动物、植物、矿物;人的身体具有三重性——肉体、心灵、精神;人类需要三种知识——理论、实用、鉴别;智慧包括三个方面——思虑周密、语言得当、行为公正。 在近代、现代,人们的许多说法仍然离不开“3”。法国大文学家雨果说:人的智慧掌握着三把钥匙:一把启开数学,一把启开字母,一把启开音符。这就是说,聪明的人要学好数学、语言和音乐。著名的物理学家爱因斯坦总结成功的三条经验是:艰苦的工作、正确的方法和少说空话。 5. 数学小网络:(一)你知道吗?我国是世界上最早使用四舍五入法进行计算的国家。大约二千年前,人们就已经使用四舍五入法进行计算了。(二)在世界四大洋中,太平洋的平均水深约是大西洋的3倍,太平洋的平均水深比大西洋多400米,印度洋的平均水深比太平洋少103米。大西洋、太平洋、印度洋的平均水深各是多少米?(三)小东同学是名小网民,他每天都要到互联网上去看一看。昨天,他在网上看到了这样一条信息:中国平均每秒向大海排放污水约316吨,美国是中国的2倍,俄罗斯是中国的3倍,其他沿海国家向大海排放污水的问题是中国的29倍。 6.“数学”名称的由来古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬
③ 小学生五年级数学知识点手抄报题目
五年级。。。
我这里只有应用题的。
1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?
90#2=45盒
90#5=18盒
答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完。因为90能整除五。
2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57#3+19盒
答:能正好装完。
3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000#(115+135)=40分
答:40分钟可以打完。
4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13X14=192人
答:五年级参加植树的人至少有192人.
5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车X时后相遇.
31X+44X=300
75X=300
X=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设X天后挖通隧道
3X+4X=119
7X=119
X=17
答:经过17天挖通隧道.
7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有X人
6X+X=140
7X=140
X=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300X2=2600米 2600#(180+80)
=2600#260
=10分
答:这时哥哥走了10分钟.
9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.
40#2=20人 40#4=10人 40#5=8人
40#8=5人 40#@0=4人 40#20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.
11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15+24)X18#2=351平方米
351X9=3195株
答:这块地可种玉米3159株.
12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5X4X3=60人 60+1=61人
答:这班有61人.
13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7X5X3=105粒 105+1=106粒
答:这盒巧克力糖至少有106粒.
14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米 1.2米=12分米 30厘米=3分米
150X12=1800平方分米 3X3=9平方分米
1800#9=200块 200X3=600元
答:需要200块这样的方砖,需要600元.
15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70X45=3150平方米 3150#90=35米
答:高是35米.
16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?
10-5+1=6层 (10+5)X6#2
=15X6#2
=90#2
=45根
答:这批钢管有45根.
等等————还有————
1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨。已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨。)(用方程解答)
2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米。如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?
3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?
4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高。它的长和宽各是多少厘米?
第一题:
解:深至少是X米,
18*8X=720
144X=720
X=5
答:深至少是5米。
第二题:
50*25*1.2=1500(立方米)
1500/25=600(分钟)
600分钟=10小时
答:需要10小时。
第三题:
16*6=96立方米=96升
96*0.74=71.04千克
答:这个油桶可以装71.04千克。
第四题:
1分米=10厘米
2100/10=210(厘米)
210/70=3(厘米)或者 210/30=70(厘米)
答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米。
第5题:
有一个正方体,边长为2厘米,求这个正方体的表面积?
答案:2*2*6=24(平方厘米)
第6题:
有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?
答案:(2*2+2*1+2*1)*2=16(平方厘米)
第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?
答案:表面积:(2*5+2*8+5*8)*2=132(平方米)
体积:2*5*8=80(立方米)
第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?
0.8*0.8*0.8=0.512(平方米)=512(升)
0.8*0.8*6=3.084(平方米)=348(平方分米)
第9道:有三根木棒,分别长12厘米,44厘米,56厘米。要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?
答案:这里求的是12,44,56,的最大的公约数!你自己算吧!
第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?
答案:50*50*5=12500(平方厘米)
第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?
答案:这里是求8和10的最小公倍数。
第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?
答案:这里求的是5和7的最小公倍数在+上1
第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?
答案:40*45=1800(平方米)
1800/75=24(米)
第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?
答案:3.4*2=6.8(平方米)
第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?
答案:8.5*4=34(平方米)
第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?
答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)
第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?
答案:(5+12)*8=68(平方米)
第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米。做这个箱子至少要多少材料?
答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)
第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?
答案:0.6*0.6*6=2.16(平方米)
第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?
答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?
答案:30
22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?
答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面
23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个?
答案:(25,75)=25个(25是25和75的最大公约数)
25/25=1个
75/25=3个
最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个。
24.兰兰的父母在外地工作,她住在奶奶家。妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次。请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次?
答案:(6,9)=18天(18是6和9的最小公倍数)
60/18=3次......6天
至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次
25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车。
答案:6=2*3
8=2*2*2
12=2*3*2
3*2*2*2=24
26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米
答案:(72÷24)×(48÷24)=3×2=6
可以裁6块.
27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?
答案;求4和6的最小公倍数,等于24天
28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?
答案:求30和36的最大公约数,等于6
29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?
答案:求50.60和90的最大公约数,等于10
30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花。这些花最多能做多少花束?
答案:求24.36和48的最大公约数,等于12
31.有一个长方体,宽是高的3倍,宽与高的长度和等于长。现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米。原来长方体的体积是多少?
答案:设高为a,宽为3a,长为4a
那么横切之后,表面积增加2*3a*4a
竖切之后,表面积增加2*a*3a
24a^2+6a^2=200
a=(20/3)^0.5
体积v=12a^3=160/3*(15)^0.5
32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米?
答案:0.4×0.25+2×0.25×0.3+0.4×0.3
=0.1+0.15+0.24
=0.49㎡
33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
答案:36÷12=3㎝
6×3×3
=54平方厘米
34.一个底面是正方形的长方形,侧面展开恰好是正方形,长方体的高为8分米,它的体积。
答案:
长方体的高=底面周长=8分米
长方体底面边长=8÷4=2(分米)
体积=底面积×高=2×2×8=32(立方分米)
35.12颗糖,平均分给3个人,每人分得这些糖的几分之几?
12/3=12/3
36.把三个完全一样的正方体木块拼成一个长方体,表面积就比原来减少了120平方厘米,拼成的正方体的表面积是多少平方厘米?
答案: 120÷4=30(平方厘米)
3×4×+1×2=14(个)小正方体的面积
14×30=420(平方厘米)
30×6×3=540(平方厘米)
37.向一个长24,宽9,高8的长方体水槽中注入6深的水,然后放入一个棱长为5的正方体铁块,水位上升了多少
答案:5×5×5÷(24×9)
=125÷216
≈0.5787
38.一个正方体所有棱长的和是84cm,它的体积是多少立方厘米?底面积是多少平方厘米?
答案:84/12=7(厘米)
体积:7*7*7= 343(立方厘米)
底面积:7*7=49(平方厘米)
39修一段路,第一天修了全长的1/4 ,第二天修了90米,这时还剩下150米没有修。这段路全长多少米?
答案设:这段路全长X米,
1/4X+90+150=X
X-1/4X=90+150
3/4X=240
X=320
40建筑工地有一堆黄沙,用去了2/3 ,正好用去了60吨。这堆黄沙原来有多少吨?
答案60/2/3=90(吨)
41用5000千克小麦可以磨出面粉4250千克,求小麦的出粉率。
答案4250/5000*100%=85%
42小麦的出粉率是80%,要磨出面粉640千克,需要多少千克小麦?
答案640/80%=800(千克)
43王老师到体育用品商店买了5只小足球,付出100元,找回32.5元,每只小足球多少元?
答案(100-32.5)/5=13.5(元)
44食堂里第一次买来白菜25千克,第二次买来白菜175千克,按每千克白菜6角钱计算,食堂里买白菜一共用去多少钱?
答案(25+175)*6=1200(角)=120(元)
45小华给小刚看一本书,小华4天看了132页,小刚3天看96页,谁看得快?为什么?
答案小华看的快!
因为小华:132/4=33(页)
小刚:96/3=32(页)
46体育用品商店原来有72只篮球,卖出2/3,又购进45只,现在有多少只篮球?
答案72*2/3=48(只)
72-48=24(只)
24+45=70(只)
47一个长方体的长是0.54米,比宽多8厘米,高是5厘米,这个长方体的面积是多少平方米?
答案0.54米=54厘米
54-8=46厘米
54*46*5=12420平方厘米=1.242平方米
48一根钢条长1米,截去2/5米,还剩多少米?
答案1-2/5=3/5米
49果园里计划用一块地的2/5种桃树,1/3种梨树,剩下的种苹果树。苹果树占几分之几?
④ 小学生数学手抄报的内容
102楼
◇一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。 ——托尔斯泰
◇时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。
——雷巴柯夫
◇在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决 —— 华罗庚
◇数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深。数学是科学之王。 ——高斯
◇数学是无穷的科学。 ——赫尔曼外尔
◇在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。
——毕达哥拉斯
◇一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。
——马克思
◇一个国家的科学水平可以用它消耗的数学来度量。
——拉奥
◇A=x+y+z. A代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。
-----爱因斯坦
◇天才=1%的灵感+99%的血汗。 ------爱迪生
◇要利用时间,思考一下一天之中做了些什么,是“正号”还是“负号”,倘若是“+”,则进步;倘若是“—”,就得吸取教训,采取措施。 ------季米特洛夫
◇人生应该象线段,有始有终;不应象射线,有始无终。
◇人生轨迹都是圆,但是你可以将圆的半径延长些。
◇一个人要在有限的生活区域内求得最大值。
◇20多岁的人是锐角,30多岁的人是钝角,40多岁的人是平角,50多岁的人是周角。
◇做朋友要象垂线,互相交流;做对手要象平行线,虽然不来往,但是你追我赶,互相超越。
数学故事:
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
八岁的高斯发现了数学定理
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
⑤ 小学数学手抄报的知识。
师大版小学数学五年级(下册)知识点
一单元:《分数乘法》
分数乘法(一)
知识点:1、理解分数乘整数的意义。分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法。分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,可以先约分在计算。
分数乘法(二)
知识点:1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算。
2、能够求一个数的几分之几是多少。
3、理解打折的含义。例如:九折,是指现价是原价的十分之九。
分数乘法(三)
知识点:1、分数乘分数的计算方法,并能正确进行计算。
分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
2、比较分数相乘的积与每一个乘数的大小。
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
二单元:《长方体(一)》
长方体的认识
知识点:1、认识长方体、正方体,了解各部分的名称。
2、长方体、正方体各自的特点。
顶 点 面 棱
个 数 个 数 形 状 大小关系 条数 长度关系
8 6 都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。 相对的面是完全一样的长方形。 12 可以分为三组,相对的棱平行且相等。
8 6 都是正方形。 每个面都是正方形。 12 长度都相等。
3、知道正方体是特殊的长方体。
4、能计算长方体、正方体的棱长总和。
长方体的棱长总和=(长+宽+高)*4或者是长*4+宽*4+高*4
正方体的棱长总和=棱长*12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长。
展开与折叠
知识点:1、认识并了解长方体和正方体的平面展开图。
2、了解正方体平面展开图的几种形式,并以此来判断。
长方体的表面积
知识点:1、理解表面积的意义。是指六个面的面积之和。
2、长方体和正方体表面积的计算方法。
3、能结合生活中的实际情况,计算图形的表面积。
露在外面的面
知识点:1、在观察中,通过不同的观察策略进行观察。
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
2、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
三单元:《分数除法》
倒数
知识点:1、发现倒数的特征并理解倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
分数除法(一)
知识点:1、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
分数除法(二)
知识点:1、一个数除以分数的意义和基本算理。
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、掌握一个数除以分数的计算方法。
除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;
除数等于1。商等于被除数;
除数大于1,商小于被除数。
分数除法(三)
知识点:1、列方程“求一个数的几分之几是多少”。
2、利用等式的性质解方程。
3、理解打折的含义。
如:打8折就是指现价是原价的十分之八。
数学与生活
粉刷墙壁
知识点:1、明确我们在粉刷教室墙壁时必须知道的条件。
2、根据实际情况进行计算相应的面积。
折叠:
知识点:1、体会立体图形与展开图形之间的关系,发展空间观念。
2、能正确判断平面展开图所对应的简单立体图形。
四单元:《长方体(二)》
体积与容积
知识点:1、体积与容积的概念。
体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳入体的体积叫做物体的容积。
体积单位
知识点:1、认识体积、容积单位。
常用的体积单位有:立方厘米、立方分米、立方米。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义。
补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
长方体的体积
知识点:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法。
长方体的体积=长*宽*高
正方体的体积=棱长*棱长*棱长
长方体(正方体)的体积=底面积*高
2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积/长/宽
补充知识点:长方体的体积=横截面面积*长
体积单位的换算
知识点:1、体积、容积单位之间的进率。
相邻两个体积单位、容积单位之间的进率是1000。
有趣的测量
知识点:1、不规则物体体积的测量方法。
2、不规则物体体积的计算方法。
五单元:《分数混合运算》
分数混合运算(一)
知识点:1、体会分数混合运算的运算顺序和整数是一样的。
分数混合运算(二)
知识点:整数的运算律在分数运算中同样适用。
分数混合运算(三)
知识点:1、利用方程解决与分数运算有关的实际问题。
2、分数中的估算。
3、利用线段图来分析题中的数量关系。
4、对最后结果的检验。
六单元:《百分数》
百分数的意义
知识点:1、百分数的意义。
百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。
2、能正确读写百分数。
3、结合生活中具体的例子理解百分数的意义。
合格率(百分数的应用一)
知识点:1、解决一个数是另一个数的百分之几的实际问题。
这部分知识同分数除法中求一个数是另一个数的几分之几相同。
2、能正确地将小数、分数化成百分数。
小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数,可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
蛋白质含量(百分数的应用二)
知识点:1、求一个数的百分之几是多少。方法同求一个数的几分之几是多少。
2、百分数化成小数、分数的方法。
百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
这个月我当家(百分数应用三)
知识点:1、用方程解决“已知一个数的百分之几多少,求这个数”的实际问题。
2、体会百分数与统计的关系。
数学与购物
估计费用
知识点:根据实际的问题,选择合理的估算策略,进行估算。
购物策略
知识点:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案。
包装的学问
知识点:1、探索多个相同长方体叠放后使其表面积最小的最有策略。
2、掌握解决问题的基本方法和过程。
七单元:《统计》
扇形统计图
知识点:1、认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,并能从中获得相应的数学信息。
奥运会(统计图的选择)
知识点:1、了解条形统计图、扇形统计图、折线统计图的特点。
条形统计图便于看出数据的多少;扇形统计图能清楚地看出整体与部分之间的关系;折线统计图能看出数据的变化趋势。
2、能够根据需要选择最为直观、有效地统计图表示数据。
中位数和众数
知识点:1、中位数和众数的意义。
将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。
一组数据中出现次数最多的数称为这组数据的众数。
2、中位数和众数的求法。
将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。
众数,就是一组数据中出现次数最多的,有可能是多个众数。
3、能根据具体的问题,选择合适的统计两表示数据的不同特征。
了解同学
知识点:综合运用所学的统计知识,发展学生的统计观念。
数学北师大版五年级下册知识点罗列汇总表
单元 各单元目录 对 应 知 识 点
第一单元
分数乘法 分数乘法(一) 1、分数乘整数“几个几分之几是多少”的意义
2、分数乘整数的计算方法
3、解决相应的分数乘整数的实际问题
分数乘法(二) 1、分数乘整数“一个数的几分之几是多少”的意义
2、解决相应的分数乘整数的实际问题
分数乘法(三) 1、分数乘分数的意义
2、分数乘分数的计算方法
3、解决相应分数乘分数的实际问题
第二单元
长方体(一) 长方体的认识 1、长方体、正方体各部分名称
2、长方体和正方体特点
3、解决运用长方体和正方体特点的相应问题
展开与折叠 1、长方体、正方体的展开图,
2、对长方体、正方体特点的再认识
长方体的表面积 1、长方体、正方体的表面积
2、长方体、正方体表面积的计算方法
3、解决运用长方体和正方体表面积的相应问题
露在外面的面 1.解决有关物体外露面的个数及面积的问题
第三单元
分数除法 倒数 1.倒数的意义
2.求一个数的倒数
分数除法(一) 1、分数除以整数的意义
2、分数除以整数的计算方法
3、解决相应分数除以整数的的实际问题
分数除法(二) 1、整数除以分数的意义
2、一个数除以分数的计算方法
3、解决相应一个数除以分数的的实际问题
分数除法(三) 1、解简单的分数方程:ax=b
2、用方程解决简单的有关分数的实际问题
数学
与生活 分刷墙壁 1、综合应用图形的面积、计算解决生活中的问题
折叠 1、立体图和平面展开图之间的关系
2、判断平面展开图所对应的简单立体图形
第四单元
长方体(二) 体积和容积 1、体积的含义
2、容积的含义
体积单位 1、体积单位:立方米、立方分米、立方厘米
2、容积单位:升、毫升
1、长方体、正方体的计算方法
长方体的体积 2、解决长方体正方体的体积的实际问题
体积单位的换算 1、体积、容积单位之间的进率
2、体积、容积单位之间换算。
有趣的测量 1、不规则物体体积的测量方法
第五单元
分数混合运算 分数混合运算(一) 1、分数混合运算顺序
2、“求一个数是另一个数的几分之几”的混合实际运用
分数混合运算(二) 1、分数混合运算律
2、“求一个数比另一个数多(少)几分之几”的混合实际运用
分数混合运算(三) 1、解稍复杂的分数方程:ax±b=c,ax±bx=c,
2、利用方程解决与分数运算有关的实际问题
百分数 百分数的认识 1、百分数的意义
2、正确读写百分数
合格率 1、小数、分数化成百分数
2、合格率、成活率、出勤率等的意义
3、求“一个数是另一个数的百分之几”的实际运用
蛋白质含量 1、百分数化成小数、分数
2、求“一个数的百分之几是多少”的实际运用
这月我当家 1、百分数与统计的联系
2、“已知一个数的百分之几是多少,求这个数”的实际运用
3、用方程解决有关百分数的简单实际问题
数学
与购物 估计费用 1、选择合理的估算策略
购物策略 1、根据实际需要,比较常见的几种优惠策略
包装的学问 1、多个相同长方体叠放后使其表面积最小的最优策略
这些是知识点,你抄上吧。花边可以画的好看、简单一点
⑥ 如何做好一份小学生数学手抄报
1. 先用长尺子画好边界,最少要隔1.5厘米
2.画好安排题目的排版,尽量使主题鲜明
3.在画些图形在白纸上,不要太密
4.现在可以细画了,先在写题目时,一定不能离题,数学的,写“数学报”或者“开心数学”“趣味数学报”尽量将题目写的醒目,然后在旁边安排一些图案,尽量跟数学沾边。
5.然后在刚才的那些方框上画点图案,只要漂亮就可以了
6.将手抄报大致画好框框后就可以写内容了
7.你可以翻开自己的数学书看看,写一些题目上去然后解答,大郅这样,可以写上加法表,减法表等,可以选个框画一幅画,追求好看啊
8.写好内容,在补充一下图案,不仅不能单调,也不能密密麻麻
9.在涂点颜色
10.写上班别姓名
⑦ 小学数学手抄报的内容资料
怎样学好数学
一、端正学习数学的态度
曾有一位名人诉苦衷:他的文科专业出身的秘书为他草拟的工作报告,虽然文采很好,可是华而不实,又缺乏逻辑性,不能令他满意,因此经常只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。
所以,实际上学习数学更重要的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。
二、掌握学习数学的方法
l、要重视数学概念的理解。仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。这也是最基本的数学思想的训练。
2‘学习几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
如何提高数学学习能力
①提升视知觉功能。数学是研究客观世界的“数量与空间形式”,要具备很强的视知觉功能,从纷繁复杂的客观世界的长短、大小、点线等归类辨析出“数与形”,基本策略是以运动为基础,多做视觉上的运动的尝试。
②提升对数学语言的理解力。数学是一种“文学兼数字与符号的结构”的语言体系。首先,应提高文字的阅读能力,其次应培养对“数与符号”的理解力,理解上有问题的,要有针对性地补救。
③提升对数学材料的概括能力。首先是培养对数学材料的抽象概括能力,其次是培养对数学的概括与推理的能力,最后是培养对图形的概括与推理能力。
④提升运算能力。
数学小故事:
一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?
分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。
小咪的爸爸是怎样做的呢?
小马虎数鸡
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?