1. 几何求面积、体积20道。小学
1. 一块棱长是8厘米的正方体木块,让她慢慢浸入一个放红墨水的水池里,它入水的深度是棱长的一半,求这块正方体木块染上红墨水的面积.
2. 有个长方体鱼缸,长40厘米,宽25厘米,高20厘米,缸内水深12厘米,求:
1)如果往缸内放入20个小钢球使水位上升了0.8厘米,那么每个小钢球的体积是多少?
2)如果继续(是继续哦~)往缸内放小钢球,每分钟放10个,一刻钟后水会不会溢出?会的话溢出多少?不会的话离缸口还有多少厘米?(两个问题)
3.如果把一个棱长是20厘米的正方体割成一个最大的圆柱,它的表面积是多少平方厘米?
4.用一块横截面是正方形的长方体木料,削成一个底面最大的圆柱,底面直径是2分米,高是4分米.问题1:求削去的面积是多少?问题2:这个圆柱的表面积是多少?
5.圆柱的体积是50.24立方厘米,底面直径是4厘米,高是多少厘米?
6.长方体的长,宽,高的比是5:4:2,其中长方体长是20厘米,求这个长方体:1.所有棱的总长2.表面积3.体积
7.在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。
8.把19个棱长为1厘米的正方体重叠在一起,按下图中的方式拼成一个立体图形,求这个立体图形的表面积。
9.用12个长5厘米、宽4厘米、高3厘米的长方体码放成一个表面积最小的长方体,码放后得到的这个长方体的表面积是多少?
10.有30个棱长为1米的正方体,在地面上摆成如下图的形式,求这个立体图形的表面积是多少平方米?
表面积:
1、 一个圆柱体的侧面展开是个边长9.42厘米的正方形,这个圆柱体的表面积是多少平方厘米?(得数保留两位小数)
2、 、一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
3、底面半径是2分米,高是7.3分米。
3、 底面周长是 18.84米 ,高是 5米
4、 一个圆柱形,侧面展开是一个边长为62.8厘米的正方形,这个圆柱形的表面积是多少平方厘米?
5、 一支没有橡皮头的圆柱形铅笔长20厘米,底面半径0.5厘米。这支铅笔表面积是多少?
6、 一个盛奶粉的圆柱形铁罐,底面周长是31.4厘米,高是1.3分米,做一个这样的铁罐至少需用铁皮多少平方厘米?(接口处不计,得数保留整数)
7、 一个圆柱,底面半径2分米,高7.3米,求表面积。
8、 一个圆柱,底面周长是18.84米,高是5米。
9、 一个圆柱,底面直径0.6米,高4米,求表面积。
10、 一个圆柱,底面半径2米,高1.5米,求表面积。
体积:
1、 一根圆柱形钢材,底面积是20平方厘米,高是1.5米。它的体积是多少?一个圆柱的底面积是25平方厘米,高4厘米,体积是多少立方厘米?
2、 一个圆柱的底面直径是5厘米,高是10厘米,它的体积是多少?
3、 一个圆柱的底面积是25平方厘米,高4厘米,体积是多少立方厘米?
4、 一个圆柱的侧面展开是边长6.28厘米的正方形。这个圆柱的体积是多少立方厘米?
5、 等底等高的圆柱和圆锥各一个,体积之和是6立方米,圆柱的体积是多少立方米?
6、
一个圆柱形油桶,从里面量的底面半径是20厘米,高是3分米。这个油桶的容积是多少?
7、 一只圆柱性玻璃杯,内底面直径是8厘米,内装药水的深度是16厘米,恰好占整杯容量的45% 。这只玻璃杯最多能盛药水多少毫升?
8、
9、 一个圆柱的底面积是25平方厘米,高6厘米,体积是( )立方厘米。
9、一个圆柱底面积是80平方厘米,高是13厘米,求这个圆柱的体积。
10、一个圆柱底面半径10厘米,高20厘米,求这个圆柱的体积。
2. 小学五年级几何面积计算题
(1)面积和是80平方厘米
过程:连接AE形成三角形AEF----有蝴蝶定理专得出:三角形AEF的面积为40平方厘米属-----EF=40*2/20=4厘米-----FB=12-4=8厘米-----CE=40*2/8=10厘米-----面积和为12*10-40=80
(2)把重合部分的各顶点用“点”工具先点上点,然后用“箭头”选择工具把这些顶点依次都选中,然后点菜单栏中的“构造”,再点其下拉列表中的“构造…内部”即可。(在内部选中的情况下,还可以改变其颜色!)
3. 小学各种几何图形的面积周长公式及运算律、分述的基本性质、比例的基本性质
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)
4. 小学几何图形字母表示面积公式!
长方形 S=ab,C=2(a+b)
正方形 S=a
5. 小学数学几何各种图计算公式
一、几何图形计算公式
A:平面图形
B:立体图形
二、加、减、乘、除各部分间的关系
1、加法各部分之间的关系
2、减法各部分之间的关系
3、乘法各部分之间的关系
4、除法各部分之间的关系
三、单位换算
1、长度单位换算
2、面积单位换算
3、体(容)积单位换算
4、重量单位换算
5、人民币单位换算
6、时间单位换算
四、应用题数量关系
1、常见的数量关系
2、平均数应用题
3、倍数应用题
4、比例尺
5、分数应用题
6、和差问题
7、流水问题
8、利息
6. 小学奥数几何求面积
此题思路:根据同一顶点的三角形的面积之比等于底边之比来做
设三角形COE的面积回为X,三角形答ABO:三角形AOE=BO:OE
三角形BOC:三角形COE=BO:OE
三角形ABO:三角形BOD=AO:DO
三角形AOC:三角形DOC=AO:DO,于是可以列出方程
式 (10+7):X=(10+X):7,解得X=7,小学生可能解不出这个方程,但也不失为一种方法
7. 小学所有几何图形的公式
小学所有几何图形的公式
正方形 a—边长 C=4aS=a2 长方形 a和-边长 C=2(a+b)S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah =absinα 菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2 =mh 圆 r-半径d-直径 C=πd=2πrS=πr2 =πd2/4 扇形 r—扇形半径a—圆心角度数 C=2r+2πr×(a/360)S=πr2×(a/360) 弓形 l-弧长b-弦长h-矢高r-半径α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环 R-外圆半径r-内圆半径D-外圆直径d-内圆直径 S=π(R2-r2) =π(D2-d2)/4
8. 小学五年级几何面积计算题
用20×12÷2,求来出ABC的面积,自再减去一个CFB的面积,得出AFB和BDC的面积。(BCD为长方形的一半)
已知EFC的面积是长方形面积的一半减去一个CFB的面积,就用AFB和BDC的面积减去一个CFB的面积,就得出了EFC和ABF的面积,就解完了。
但斜线阴影我不会画。
9. 小学数学公式大全(一定要完整!)
小学数学公式大全
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
二、单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分
1分=60秒 1时=3600秒
三、数量关系计算公式方面
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
五、特殊问题
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
(1)一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间
10. 小学奥数几何求面积
因为是小学抄奥数,就袭不用全等的概念了
将三角形ADE绕着D旋转,使得AD和CD重合(因为AD=CD),然后形成一个正方形(四个角都是90度,同时DE=EB),正方形的面积和原来四边形是一样的,那么就是16,所以正方形边长=4,这样三角形ADE的面积=4×2/2=4,BCDE面积=16-4=12