导航:首页 > 小学全识 > 小学图形与几何知识点

小学图形与几何知识点

发布时间:2020-11-29 06:37:57

A. 初二数学几何知识点归纳

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。
1.使学生掌握四边形的有关概念及四边形的内角和定理;
2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;
3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;
4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.
教学重点:
四边形的内角和定理.
教学难点:
四边形的概念
教学过程:
(一)复习
在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.
(二)提出问题,引入新课
利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)
问题:你能类比三角形的概念,说出四边形的概念吗?
(三)理解概念
1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.
在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.
2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.
3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.
练习:课本124页1、2题.
4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.
5.四边形的对角线:
(四)四边形的内角和定理
定理:四边形的内角和等于 .
注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.
(五)应用、反思
例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.
求证:(1) ;(2)
证明:(1) (四边形的内角和等于 ),

(2)
.
练习:
1.课本124页3题.
2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?
小结:
知识:四边形的有关概念及其内角和定理.
能力:向学生渗透类比和转化的思想方法.
作业: 课本130页 2、3、4题.

B. 图形与几何知识点整理。

图形于几何包含:图形的认识,图形的运动,测量,图形与位置。

图形是指在二维空间中以内轮廓为界限的空间碎片,在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分,不具有空间的延展性,它是局限的可识别的形状。图容形区别于标记、标志与图案,它既不是一种单纯的符号,更不是单一以审美为目的的一种装饰,而是在特定的思想意识支配下的某一个或多个视觉元素组合的一种蓄意的刻画和表达形式。

C. 求关于初一数学几何图形的知识点

一、知识点回顾
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
圆柱(圆柱的侧面是曲面,底面是圆)

生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(棱柱的侧面是若干个小长方形构成,底面是多边形)
(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)
棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)

4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种

截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
8 三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。
9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

D. 图形与几何知识点整理

认识立体图形
(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.
(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.
(3)重点和难点突破:
结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.
点、线、面、体
1)体与体相交成面,面与面相交成线,线与线相交成点.
(2)从运动的观点来看 点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
(3)从几何的观点来看 点是组成图形的基本元素,线、面、体都是点的集合. (4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体. (5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.
欧拉公式
(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2.这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律. (2)V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.
几何体的表面积
(1) 几何体的表面积=侧面积+底面积(上、下底的面积和) (2) 常见的几种几何体的表面积的计算公式
①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)
②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)
③长方体表面积:2(ab+ah+bh) (a为长方体的长,b为长方体的宽,h为长方体的高) ④正方体表面积:6a2 (a为正方体棱长
认识平面图形
(1)平面图形: 一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等. (2)重点难点突破:
通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内.
几何体的展开图
(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.
(2)常见几何体的侧面展开图:
①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.
(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
展开图折叠成几何提体
通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形 正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.
(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.
截一个几何体
(1) 截面:用一个平面去截一个几何体,截出的面叫做截面.
(2) 截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个
面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形
第二节 直线 射线 线段
直线 射线 线段 的表示
(1) 直线、射线、线段的表示方法
①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段
AB(或线段BA).
(2) 点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外
直线的性质
(1)直线公理:经过两点有且只有一条直线. 简称:两点确定一条直线. (2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.
线段的性质
线段公理 两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短. 简单说成: 两点之间,线段最短.
两点间的距离
(1) 两点间的距离连接两点间的线段的长度叫两点间的距离.
(2) 平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两
个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离
比较线段的长短
(1)比较两条线段长短的方法有两种:度量比较法、重合比较法. 就结果而言有三种结果:AB>CD、AB=CD、AB<CD. (2)线段的中点:把一条线段分成两条相等的线段的点. (3)线段的和、差、倍、分及计算
做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.
如图,AC=BC,C为AB中点,AC=12AB,AB=2AC,D 为CB中点,则CD=DB=12CB=14AB,AB=4CD,这就是线段的和、差、倍、分.

第三节 角
一:角
(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.
(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角.
(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
钟面角 (1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走112格,分针1分钟走1格.钟面上每一格的度数为360°÷12=30°.
(2)计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.
(3)钟面上的路程问题 分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6° 时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 方向角
(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.
(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.) (3)画方位角 以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.
二:角的比较与运算
度分秒的换 (1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法. 角平分线的定义
(1)角平分线的定义 从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线. (2)性质:若OC是∠AOB的平分线 则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC. (3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.

具体的地址 http://wenku..com/link?url=s_-UhjnnVY3dxyN-186kqfyWUbojHg0_cbJsjAHdPNBdF1s2XaLqqLO

E. 图形与几何知识点整理

A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
3、相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:
1、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。
D、证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

F. 写出数与代数、图形与几何、统计与概率的三大点 1.写讲的内容与知识点 2.举事例 3.掌握情况 拜

初中数学教学内容分为数与代数,图形与几何,统计与概率,综合与实践四个部分。
2、数与代数的内容主要包括数的认识,数的表示,数的大小,数的运算,数量的估计、用字母表示数,代数式及其运算、方程、方程组、不等式、函数等。
3、“图形与几何”的主要内容有空间和平面基本图形的认识,图形的性质,分类和度量、 图形的平移、旋转、轴对称、相似和投影、平面图形基本性质的证明、运用坐标描述图形的位置和运动。
4、“统计与概率”的主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
5、“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。在学习活动中,学生将综合运用“数与代数”“图形与几何”“统计与概率”等知识和方法解决问题。“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。

G. 初中数学几何知识点

几何知识点汇总:
第一部分:相交线与平行线
1、线段、直线的基本性质:2、角的分类:
3、平面内两条直线的关系:
4、平行线的性质与判定:
第二部分:三角形
1、重要线段:中线、角平分线、高线、中位线:
2、三角形边、角的性质:
3、三角形按边、按角分类:
4、三角形中位线性质及应用:
5、等腰三角形的性质:
6、等腰三角形的判定:
7、直角三角形的性质:
8、直角三角形的判定:
第三部分:全等与相似
1、全等三角形的性质、判定:
2、直角三角形的判定:
3、相似三角形的性质、判定:
4、相似多边形的性质与判定:
第四部分:四边形
1、多边形的内角和与外角和:
2、平行四边形的定义、性质、判定:
3、平行四边形的典型图形与结论:
5、矩形的定义、性质、判定:
6、矩形的典型图形与结论:
7、菱形的定义、性质、判定:
8、菱形的的典型图形与结论:
9、正方形的的定义、性质、判定:
10、正方形的典型图形与结论:
11、等腰梯形的定义、性质、判定:
12、等腰梯形的的典型图形与结论:
13、顺次连接各边中点所成四边形的形状与原四边形的关系:
14、常见四边形的对称特点:
第五部分: 圆
1、点与圆的位置关系:
2、垂径定理:
3、圆心角的定义、性质定理:
4、圆周角的定义、性质定理:
5、确定圆的条件:
6、圆的对称性:
7、直线和圆的位置关系:
8、切线的性质、判定:
9、切线长定理:
10、三角形的内心、外心的定义和确定方法:
11、圆与圆的位置关系:
12、正多边形和圆:
13、弧长公式、扇形面积公式:
15、扇形与它围成的圆锥的关系:
第六部分:视图与投影
1、几何体的截面的形状:
2、小正方体的展开图:
3、常见集几何体的三视图:
4、中心投影、平行投影、正投影:
第七部分:平移与旋转
1、图形平移的性质:
2、图形旋转的性质:
第八部分:解直角三角形
1、三种锐角函数的定义式:
2、三角函数的特殊值:
3、解直角三角形所需要的关系式及定理:
4、常见解直角三角形的应用:
5、测量物体高度的两种主要方法:
第九部分:
(一)几何模型
(二)解决问题的策略
1、利用特殊情形探索规律:
2、分情况讨论:
3、将未知转化为已知:
4、数与形相结合:
5、几何与代数的综合应用:

H. 小学图形与几何复习人教版知识点(教材全解)

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升


平面图形【认识、周长、面积】

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程

阅读全文

与小学图形与几何知识点相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99