1. 小学一到五年级数学知识重点汇总(详细)
小学五年级全科目课件教案习题汇总语文数学
三 单 元
有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点。 正方体可以看成是长、宽、高都相等的长方体。
3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高。 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和。 长方体的棱长总和=(长+宽+高)×4, 用字母可以表示为=C长方体(a+b+h)4。
正方体的棱长总和=棱长×12,用字母可以表示为=12aC正方体。 5、长方体或者正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为
=(ab+ah+bh)2S长方体。
正方体的表面积=棱长×棱长×6,用字母表示为2=6aS正方体。 6、物体所占空间的大小叫做物体的体积。
计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m。3311000dmcm,33
11000mdm。 7、棱长是1 cm的正方体,体积是13cm。一个手指尖的体积大约是13
cm。
棱长是1 dm的正方体,体积是13dm。一个粉笔盒的体积大约是13
cm。
棱长是1 m的正方体,体积是13
m。用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13
cm。
8、长方体的体积=长×宽×高,用字母表示为=abhV长方体。 正方体的体积=棱长×棱长×棱长,用字母表示为3
=aV正方体。 长方体和正方体的统一公式:支柱体的体积=底面积×高。
9、容器所能容纳物体的体积,叫做它的容积。计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml。
4
311Ldm,311mlcm,11000Lml
10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同。但是要从容器里面量出长、宽、高。
11、形状不规则的物体,求他们的体积,可以用排水法。水面上升或者下降的那部分水的体积就是物体的体积。
第 四 单 元
一、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。把什么平均分,什么就是单位“1”。 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位。一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大。 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线。 =
被除数被除数除数除数,=分子
分子分母分母
。
5、求一个数是另一个数的几分之几的解题方法:用除法计算。 =一个数一个数另一个数另一个数
在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=
1
比较量
比较量单位“”单位“” ”计算。
6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率
,能约分的要约成最简分数。 二、真分数和假分数
1、分子比分母小的分数叫做真分数,真分数小于1;
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1;
由整数部分(不包括0)和真分数合成的分数叫做带分数。
2、假分数化成整数或带分数,要用分子除以分母。当分子是分母的倍数时,
5
能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母
三、分数的基本性质、约分、通分
1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数。
2、两个数公有的因数,叫做它们的公因数。其中最大的公因数叫做它们的最大公因数。当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数)
3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数。也可以用短除法计算。
4、分子和分母只有公因数1的分数叫做最简分数。
把一个分数化成和它相等,但分子分母都比较小的分数叫做约分。约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分。
5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数。一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法。当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积。
6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分。 四、分数和小数的互化 1、小数化分数的方法
小数化成分数时,小数部分有几位小数,就在1后面写几个“0”作分母,把原来的小数去掉小数点后作分子。小数化成分数后,能约分的要约成最简分数。
2、分数化小数的方法
6
①分母是10,100,1000„的分数化成小数,可以直接去掉分母,看分母1后面后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点;分子位数不足时,用0补足,整数部分写0.
②不是以上这些特征的分数时,要用分子除以分母。除不尽的,根据“四舍五入”法保留一定的位数。
3、判断一个分数是否能化成有限小数的方法:一个最简分数,如果坟墓中只含有质因数2或5,这个分数就能化成有限小数。 4、比较几个数的大小
如果只有两个分数要比较大小:①分母相同的,分子大的分数就大;②分子相同的,分母越大的分数反而越小;③分子、分母都不相同的,要化成分母相同的分数再比较。
几个数比较大小,包含分数和小数时,一般把分数化成小数后再比较大小,最后需要比较的是原数的大小。(需要特别注意是从大到小排列时要用大于号连接;而小到大排列,用小于号连接)
第 五 单 元
1、同分母分数相加减,计算时,分母不变,只是把分子相加减。
2、计算时要注意:当计算的结果是假分数时,要化成整数或带分数;当计算的结果能约分的,一定要约成最简分数;当几个分数相减,分子等于0时,这个分数就是0.
3、任意一个自然数(1除外)作为分母的所有最简真分数的和,等于最简真分数的个数除以2.
4、计算异分母分数加减法,因为分母不同,就意味着分数单位不同,不能直接相加减。根据分数的基本性质,先进行通分,然后再按照同分母的分数加减法的计算法则进行计算。
5、分数加减混合运算的运算顺序和整数加减混合运算的顺序相同,即从左到右依次计算,有括号的要先算括号里面的。整数加法的交换律、结合律、减法的性质对于分数加减法仍然适用。
第六 单元 1、在一组数据中,出现次数最多的数就是这组数据的众数,众数能够反映一组数据的集中程度。
2、在一组数据中,众数可能不止一个,也可能没有众数。
2. 小学数学三至六年级知识点
找了几个版的
苏教:
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
北师:
小学数学四年级前四个单元知识点总结
1、路程速度时间公式:s=vt v=s÷t t=s÷v
2、正方形周长公式:C=4a
3、正方形面积公式:S=a2
4、长方形周长公式:C=2(a+b)
5、长方形面积公式:S=ab
6、加法交换律:a+b=b+a
7、加法结合律:a+b+c=a+(b+c)
8、乘法交换律:a·b=b·a
9、乘法结合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角
12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分类:锐角三角形,直角三角形,钝角三角形
14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。
15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形
16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001-----
18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有稳定性
22、三角形任意两边之和大于第三边
23、三角形的内角和是180度
24、学会画角
25、会比较小数的大小
26、单位换算
长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
质量单位:1千克=1000克 1吨=1000千克=1000000克
钱的换算:1元=10角=100分 1角=10分
时间单位:1时=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小时
一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。
面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公顷=10000平方米 1平方千米=100公顷=1000000平方米
3. 小学数学三至六年级知识点和概念
行程问题是必考
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
相遇问题:(直线):甲的路程+乙的路程=总路程
相遇问题:(环形):甲的路程 +乙的路程=环形周长
追及问题:追击时间=路程差÷速度差(写出其他公式)
追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间
追及问题:(环形):快的路程-慢的路程=曲线的周长
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度:船速+水速 逆水速度=船速-水速
静水速度:(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
流水问题:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2
1、一舰艇和一货轮同时从A港口前往相距100千米的B港口,舰艇和货轮的速度分别为100千米/时和20千米/时,舰艇不停地往返于A、B两港口巡逻(巡逻掉头的时间忽略不记)。求货轮从A港口出发后与舰艇第二次相遇时用了多长时间?
100*4/(100+20)=10/3小时
2、甲乙两车同时分别从AB两站相对开出.第一次在离A站90千米处相遇.相遇后两车一原速继续前进,到达对方出发站后立刻返回,第二次相遇在离A站50千米处.求AB两站之间的距离.
第一次相遇甲乙两车共行了1个全程,甲车行了90千米
第二次相遇甲乙两车共行了3个全程,甲车行了90×3=270千米
同时,甲车行的还是2个全程少50千米
AB两站之间的距离是
(90×3+50)÷2=160千米
4. 小学数学五年级位置知识点总结
网络知道
位置的知识点
小学数学五年级位置知识点总结查看全部9个回答
小学数学五年级内位置知识点总结容
小学数学五年级位置知识点总结
我来答
热心网友
2019-01-14
位置重要知识点整理
1、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或
字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓ 竖排叫列 横排叫行
(从左往右看)(从下往上看)
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上
望采纳 谢谢
5. 小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
6. 小学五年级数学知识点
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方。 2a表示a+a
18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:方程左边=…… 23、方程的解是一个数;
=…… 解方程式一个计算过程。
=方程右边
所以,X=…是方程的解。
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】 字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转 27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区) 0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证号码:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
第一单元 倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。)
1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。3、整数与自然数的关系:整数包括自然数。
4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:从1倍开始有序的找。
6、一个数倍数的特点: ①一个数的倍数的个数是无限的;
②最小的倍数是它本身;
③没有最大的倍数。
7、找因数:找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点: ①一个数的因数的个数是有限的;
②最小的因数是1;
③最大的因数是它本身。
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数
11、5的倍数的特征:个位是0或5的数是5的倍数。
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;
②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数;
②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数
14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是唯一的质数中的偶数。
100以内的质数:
15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
1既不是质数也不是合数,最小的合数是4.
16、按一个数的因数个数分,自然数可以分为三类。
第二单元 图形的面积(一)
1、 长方形周长=(长+宽)×2 C = 2 ( a + b )
2、 长方形面积=长×宽 S = a b
3、 正方形周长=边长×4 C = 4 a
4、 正方形面积=边长×边长 S = a 2
5、 平行四边形面积=底×高 S = a h
6、 平行四边形底=面积÷高 a = S ÷ h
7、 平行四边形高=面积÷底 h = S ÷ a
8、 三角形面积=底×高÷2 S = a h ÷ 2
9、 三角形底=面积×2÷高 a = 2 S ÷ h
10、 三角形高=面积×2÷底 h = 2 S ÷ a
11、 梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面积×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面积×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公顷=1000000平方米
16、 1公顷=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三单元 分数
1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、 分母:表示平均分的份数。分子:表示取出的份数。
3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做
分数。表示其中的一份的数,叫做这个分数的分数单位。
4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。
5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。
6、 带分数:由整数和真分数组成的分数叫做带分数。
7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。
8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。
9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。
10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 如12=2×2×3
12、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
13 互质:两个数的公因数只有1,这两个数叫做互质。
互质的规律:
(1) 相邻的自然数互质;
(2) 相邻的奇数都是互质数;
(3) 1和任何数互质;
(4) 两个不同的质数互质
(5) 2和任何奇数互质。
质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
15、 求最大公因数,最小公倍数的方法
关系
最大公因数
最小公倍数
倍数关系
16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的
分数是最简分数。
17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过
程叫做约分。计算结果通常用最简分数表示。
18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数
做分数的分母较简便。
19、 如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分
数大小不变。
21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。
②把3平均分成4份,表示这样的1份。
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择
其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地。
第四单元 分数加减法
1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。
2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。
3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。
4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。
第五单元 图形的面积(二)
1, 求组合图形面积的方法:
(1) 分割法:将图形进行合理分割,形成基本图形,基本图形面积的和就是组合图形的面积。(和法)
(2) 添补法:将图形所缺部分进行添补,组成几个基本图形,基本图形面积-添补图形面积=组合图形面积。
2.不规则图形面积的估算:
(1)数格子的方法。
(2)把不规则图形看成近似的基本图形,估算出面积。
鸡兔同笼:
1, 列表法。
2, 假设法
3, 列方程
点阵中的规律:略
第六单元 可能性大小
1,用1表示事件一定发生,用0表示事件一定不会发生,用分数表示可能性的大小。
2,设计活动方案。
铺地砖:
1, 地面面积除以每块地砖面积=所铺地砖块数
2, 每平方米所需地砖块数乘以地面面积=所铺地砖块数
3, 列方程
4, 注意:转化单位,结果不是整块数用进一法取近似值
1、直接写出得数。(每小题0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、计算,能简算的要简算。(每小题2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小题2分,共6分)
① X+1/5-4/35=27
② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式计算。(每小题3分,共6分)
① 65减去多少个2.5后还剩17.5?
② 一个数的一半与20的和是120,求这个数。
5、图形观察、计算。(每小题3分,共6分)
???
五、解决问题。(每小题5分,共30分)
1、小明的妈妈去超市买牛奶,有下面这样三种瓶装的牛奶,你认为买哪种瓶装的最合算?为什么?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一块长45米,宽28米的长方形地上铺一层4厘米厚的沙土,如果用一辆每次只能运3.5方沙土的汽车来运这些沙土,这辆汽车至少要运多少次?
3、一段长方体木材,长1.2米,如果锯短2分米,它的体积就减少40立方分米。求原来这段木材的体积。
4、东东家有一些鸡蛋,5个5的数,6个6的数,12个12的数,都多4个,已知这些鸡蛋在100-130个之间。你知道东东家有多少个鸡蛋吗?
7. 小学五年级数学知识点总结
数学与交通:
1 相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选
择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择
其中一种价格便宜的就行。
②租车问题: 用列表法解决问题。两个原则:多用单价低的,少空座。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行
驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明
原地不动;线往下画,说明又从终点回到某地。
8. 小学3到5年级数学公式和重要知识
解析:
(1) 解方程及应用题
(2) 复杂的数学运算
9. 小学三年级数学知识点总结
最低0.27元/天开通网络文库会员,可在文库查看完整内容>
原发布者:可柯斯达
西师版小学数学三年级上册期末复习知识点第一单元:克、千克、吨的认识【知识要点】:1、计量物品轻重的单位有克、千克、吨。2、计量较轻的物品有多重,通常用克作单位,克用字母g表示。3、计量较重的物品有多重,通常用千克作单位,也叫公斤,千克用字母kg表示。1kg=1000g4、计量很重的物品有多重,通常用吨作单位。吨用字母t表示。1t=1000kg5、相邻质量单位间的进率是1000。40个25千克的学生重1吨。5、1T=1000kg1kg=1000g.6、换算:单位相互换算的方法(1)把吨化成千克,千克化成克,是用吨数或千克数乘进率1000。(2)把千克化成吨,克化成千克,是用千克数或克数除以进率1000。口诀:小换大减三个0,大换小加三个0如:把克换成千克、千克换成吨去掉3个0,把吨换成千克、千克换成克加上3个0.7、重量的大小比较记忆:先统一单位,再比较大小。【应用】1、1枚2分硬币重1克;一袋食盐重500克,2袋食盐重1kg。1个鸡蛋的重量大约是50g,1个苹果的重量大约是250g。2、5本数学书的重量大约是1kg。1个小学生的体重大约是25kg,4个小学生的体重大约是100kg,40个小学生的体重大约是1吨。一头大象约重6吨。3、计算:1吨+3000千克=()吨,方法是当相加或相减的数单位不一样时,要先换成统一的单位后在计算。注意:1㎏棉花和1㎏铁一样重。第二单元:两、三位数乘一位数的乘法【知识要点】:(一)两、三位数乘一位数的乘法1.口算:①整十、整百数乘一位数的口算,计算时先计算0前
10. 小学一到五年级数学知识点总结
我国第一次健美操比赛是1986年4月在广州 举行的“全国女子健美操表演赛”。
健美操在我国正式推进是在1982年底,上海电视台录制的娄琢玉的形体健美操,持环健美操等专题节目。1963年6月,我国体操健将戚玉芳在北京崇文区工人俱乐部教授健美操,北京、广州、上海等地也办起了健美操训练班。1984年夏天,中央电视台播放了孙玉昆编创的女子健美操节目。1984年北京体育学院为适应健美操的发展,成立了健美操研究组。1985年北京体育学员温庆荣、牛乾元、张绍程、康亚维、刘文君、秦淳、陈燕等7人创编了在全国得到广泛推行《青年韵律操》等六套健美操,并完成了六套健美操的录像制作。1986年12月他们编写了我国第一部《健美操试用教材》,并正式为体育学院本科学生开设了健美选修课。
在我国健身健美操发展的同时,以竞技为主要目的的竞技健美操也在发展中。我国第一次健美操比赛是1986年4月在广州举行的“全国女子健美操表演赛”。这次全国女子健美操表演赛,开创了我国健美操比赛的新路,探索了我国健美操比赛方法,展示了我国健美操发展的成果。
1987年5月,由康华健美研究所、北京体育学院、中央电视台等单位联合举办了全国首届“长城杯”健美操友好邀请赛。这次比赛进行了男女单人操,混合双人操,男女3人操和混合6人操(男3女3)等6个项目的比赛,这是我国首次全国性的竞技健美操的比赛。
1988年6月,由康华健美康复研究所和中央电视台联合举办了“长城杯”国际健美操友好邀请赛,有中国、美国、日本、香港、克拉克国际健美中心、巴西等六个国家,地区和体育组织共30名运动员参赛,同时在北京成立中国健美操协会筹委会,以促进国际健美操运动的发展。
1995年12月13日-19日,中国健美操队一行7人赴法国巴黎参加了由国际体操联合会健美操委员会举办的首届健美操锦标赛,这是中国开展健美操运动以来第一次参加国际性大型体育赛事。为了有组织,有计划地在全国大学生中开展健美操运动,加强技术交流,学术研究和国际间的交流,1992年2月中国大学生体协健美操,艺术体操协会在北京成立,这标志着我国大学生健美操运动的开展进入一个新的阶段。1992年9月经国家民政部批准,中国健美操协会在北京正式成立。中国健美操协会是中国奥林匹克委员会承认的全国性运动协会,该协会的成立,将使中国健美操运动进入一个有组织、有计划发展的新时期。