『壹』 数与代数知识点
这个是概念http://wenku..com/view/57970720192e45361066f5b7.html
这个是知识点梳理http://wenku..com/view/02604049e45c3b3567ec8b16.html?from=related&hasrec=1
希望专对你有属帮助
『贰』 小学数学数与代数包括哪些内容
小学数与代数内容第1学段包括哪些内容:发问模糊。第1学段是指小学1⑶年级。 “数与代数”的主要内容有: 数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。 在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,建立模型思想。 数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情形中的数量关系。 符号意识(原称符号感)主要是指能够理解并且应用符号表示数、数量关系和变化规律;知道使用符号可以进行1般性的运算和推理。建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要情势。 运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足1定的运算律。学习这些内容有助于理解运算律,培养运算能力。 模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。从现实生活或具体情境中抽象出数学问题,是建立模型的动身点;用符号表示数量关系和变化规律,是建立模型的进程;求出模型的结果并讨论结果的意义,是求解模型的进程。这些内容有助于培养学生的学习兴趣和利用意识,体会数学建模的进程,建立模型思想。
『叁』 小学数学数与代数包含哪几个方面
小学数学数与代数包括四个方面:整数、小数、分数、百分数
一:整数
1、自然数
2、正数
3、负数
知识点二:小数
1、小数的意义
2、小数大小的比较
3、数的改写与求近似数
知识点三:分数
1、分数的意义
2、分数单位
3、分数的分类
4、分数的基本性质
5、分数与除法的关系
6、约分
7、最简分数
8、通分
9、分数大小的比较
10、分数化小数
11、小数化为分数
12、分数的基本性质与小数基本性质的关系
知识点四 :百分数
1、 求常见的百分率
2、 求一个数比另一个数多(或少)百分之几
3、 求一个数的百分之几是多少
4、 已知一个数的百分之几是多少,求这个数
5、 折扣
6、 利率
(3)小学数与代数知识要点扩展阅读
《小学数学课程标准》中关于数与代数部分的部分要求:
1、数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
2、符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
3、经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量。
4、"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
『肆』 数与代数知识整理
一、 知识整理。
1、 数与代数
知识点一 整数
1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。在整数中大于零的数称为正整数,小于零的数称为负整数。正整数、零与负整数统称为整数。
2、整数的范围:除自然数外,整数还包括负整数。但在小学阶段里,整数通常指的是自然数。
3、读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
4、写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
知识点二 自然数
1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。
2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。
3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。
知识点三比较整数大小的方法。
1、数位不同的正整数的比较方法:如果位数不同,那么位数多的数就大。
2、数位相同的正整数的比较方法:如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。依次类推直到比较出数的大小。
知识点四整数的改写。
把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。
知识点五倍数和因数。
1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。
2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
知识点六最大公因数、最小公倍数和互质数。
1、最大公因数的定义:几个数公有的因数,叫作这几个数的最大公因数;其中最大的一个,叫作这几个数的最大公因数。
2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。
3、互质数:公因数只有1的两个数,叫作互质数。
知识点七2、3、5倍数的特征。
1、2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。
2、5的倍数的特征:个位上是0或者5的数是5的倍数。
3、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
4、同时是2、5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,且个位上是0,这个数一定同时是2、5、3 的倍数。
知识点八奇数、偶数。
1、奇数:不是2的倍数的数叫作奇数。
2、偶数:是2的倍数的数叫偶数。
3、数的奇偶性:(1)两个相同性质的数(都是偶数或都是奇数)相加减,结果都是偶数。(2)两个不同性质的数(一个是奇数,另一个是偶数)相加减,结果是奇数。
知识点九质数、合数
1、质数的含义:一个数只有1和它本身两个因数,这样的数叫作质数(或素数)
2、合数的含义:一个数除了1和它本身以外还有别的因数,这样的数叫作合数。
3、判断一个数是质数还是合数的方法:(1)只有两个因数的数一定是质数,有3个或3个以上因数的数是合数。(2)个位上是0、2、4、6、8和5的数(除了2和5)一定不是质数,质数个位上的数字只能是1、3、7和9(2和5外)
知识点十整数、负数
1、负数的定义:像-1,-2,-15…这样的数叫作负数。“-”叫负号,读作:负。
2、正数的定义:以前学过的8,16,200…这样的数叫作正数。正数前面也可以加“+”,一般省略不写。
3、负数的大小比较:数字越大的负数反而越小。
2、 数的认识
知识点一 小数
1、读法:读小数的时候,整数部分按照整数的读法来读,小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2、写法:写小数的时候,整数部分按照整数的写法来写,小数点点在个位的右下角,小数部分从高位到低位顺次写出每个数位的数字。
3、小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……。
4、求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5、小数化成分数的方法:先把小数改写成分母是10,100,1000……的分数,再约分,就化成了分数。
6、小数化成百分数的方法:先将小数点向右移动两位,再在后面添上%,就化成了百分数。
7、小数的分类:(1)纯小数都小于1,带小数大于或小数。
(2)有限小数:小数部分位数是有限的。无限小数:小数部分位数是无限的。(3)无限小数的分类:在无限小数中又分为无限循环小数和无限不循环小数。(4)循环节:一个数的小数部分,依次不断重复出现的一个或几个数字,叫作这个循环小数的循环节。(5)循环点:记循环小数时,在第一个数字和最末一个数字上分别记上一个圆点“.”,表示这个循环小数的这几个(或一个)数字重复出现,这样的圆点叫作循环点。
8、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
知识点二 分数
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几分的数叫作分数。表示其中一份的数是这个分数的分数单位。
2、分数的分类:(1)真分数:分子比分母小的分数。(2)假分数:分子大于或等于分母的分数。
3、分数大小比较:(1)分子相同的分数,分母小的分数比较大。(2)分母相同的分数,分子大的分数就大。(3)分子、分母都不相同的分数,先化成相同分母的分数,再比较大小或者化成分子相同的分数,再比较大小。
知识点三 百分数。
1、百分数的定义:像2%,5%,120%…这样的分数叫百分数,也叫百分比或百分率。表示一个数是另一个数的百分之几。
知识点四 分数和百分数的区别。
分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体数。所以分数可以有单位,百分数不能有单位。
知识点五 比
1、比的意义:两个数相除又叫作两个数的比。
2、比的意义的应用:根据比的意义可以求比值,用前项除以后项,得到的结果是一个数。
3、比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变。
4、比的基本性质的应用,可以化简比。
二、 例题精讲。
例题1:我国普通小学在校生有108645000人,读作:( ),其中6在( )位上,万位上的数是( ),改写成用“亿”作单位,并保留两位小数约是( )亿人。
【分析】(这道题是对数的读法、数的改写这两个知识点的运用)从高位到低位,一级一级地读,个级的3个0都不读;从低位到高位,一级一级地数,6在十万位上,万位上的数是4;先把108645000这个数改写成以“亿”为单位的数;在把改写后的数按照“四舍五入”法保留两位小数。
解答:一亿零八百六十四万五千 十万 4 1.09
提示:在读数位较多的数时,可用“,”进行分级后再一级一级读。
例题2 : 填一填
(1)世界最高峰珠穆朗玛峰约八千八百四十四点四三米。这个数写作:( )
(2)把0.66,66.6%,0.67, 按从小到大顺序填入下面的括号。
( )<( )<( )<( )
(3) 的分子加上8,要使分数的大小不变,分母应加上( )
(4)2厘米与4米的最简整数比是( ),比值是( )
【分析】(1)整数部分按照整数的写法来写,小数点点在个位的右下角,小数部分顺次写出每个数位上的数字。
(2)把66.6%和 都改写成小数,然后按照小数比较大小的方法进行比较。
(3) 的分子加上8,则分子变成12,分子4扩大到原来的3倍是12,要想分数值不变,分母也得扩大到原来的3倍,9扩大到原来的3倍是27,再想9加几得27。
(4)先统一单位,4米=400厘米,再把2:400化成最简整数比,求比值用比的前项除以比的后项。
解答:(1)写作:8844.43米
(2)(0.66)<(66.6%)<( )<(0.67)
(3)18
(4)1:200
例题3:一段路甲走了 时,乙走了 时,甲、乙的速度比是多少?
【分析】一段路的总路程可以看作单位“1”,则甲的速度是1÷ = ,乙的速度是1÷ = ,甲和乙的速度比是 : ,把比的前项和后项同时扩大到原来的18倍,这样就化成了最简整数比。
解答: : = ×18: ×18=27:20
答:甲、乙的速度比是27:20。
提示:解答此类问题,可以将未知的总量看作单位“1”,然后进行计算,注意结果要写成最简整数比的形式。
三、 专题训练。
1、爸爸的手表每6时快2秒,如果不调整,一天要快多少秒?
2、在一个长8厘米,周长是22厘米的长方形内画一个最大的三角形,这个三角形的面积是多少平方厘米?
3、小明、小红、小刚三人定期去少年宫学习。小明每过5天去一次,小红每过6天去一次,小刚每过9天去一次。如果9月10日这一天他们三人在少年宫相遇,那么下次相遇在哪一天?
4、一只蜗牛沿着10米高的柱子往上爬,每天从清早到傍晚共向上爬5米,夜间下滑4米,像这样,从某天清晨开始,它需要几天才能爬上柱子的顶端?
5、填一填。
(1)0.25=( )÷12= =6:( )=( )%
(2)把 的分子减去3,要使分数的大小不变,分母应减去( )
(3)把0.46扩大( )倍是460,把56缩小到它的 是( )
(4)6.2098保留两位小数是( ),精确到千分位是( )。
6、一个数的 正好是3的40%,求这个数。
7、某机床厂去年生产机床720台,比原计划多生产机床120台,去年实际生产的机床数超过原计划的百分之几?
8、工程队修一条路,已修的和未修的长度比是1:5,再修490米后,已修的与未修的长度的比值恰好是3,这条路全长是多少米?
9、一桶油连桶共重40千克。倒出一部分油后,桶里的油还剩40%,这时连桶称共重19.6千克,这个桶原来共装油多少千克?
10、小红看了一本故事书,第一天看了这本书的一半多10页,第二天又看了余下的一半多10页,第三天看了10页正好看完。这本故事书共有多少页?
四、 参考答案。
1、解析:一天有24小时,24时里有4个6小时,一个6小时就快2秒,4个6小时就快了4个2秒。即:
24÷6×2=8(秒)
答:一天要快8秒。
2、解析:根据三角形的面积公式“底×高÷2”要知道底和高就可以求出三角形的面积。画一个最大的三角形,长方形的长作为三角形的底,长方形的宽可以作为三角形的高。先求高:(就是长方形的宽)周长除以2再减长即22÷2-8=3厘米。长是已知的是8厘米。三角形的面积为:
(22÷2-8)×8÷2=12(平方厘米)
答:这个三角形的面积是12平方厘米。
3、解析:根据题意可知关键就是求5、6和9的最小公倍数,它们的最小公倍数是90。在9月10日再过90天就是12月9日
4、解析:每天向上爬1米,前5天爬到第5米处,最后一天爬5米。所以需要6天的时间。
5、解析:(1)3,20,24,25
(2)4
(3)1000,0.56
(4)6.21,6.210
6、解析:3×40%÷ =6。
7、解析:求超过原计划的百分之几?用超过的120台除以原计划的就可以了。
120÷(720-120)=20%
答:去年实际生产的机床数超过原计划的20%。
8、解析:把已修和未修的比转换为已修的是全长的 。再修490米后,比值是3,说明已修的和未修的比是3:1,已修的是全长的 。这样490米就是 比 多的分率。即:
490÷( )
=490÷
=840(米)
答:这条路全长是840米。
9、解析:倒出一部分油,即(40-19.6)。桶里还剩40%,就是倒出(1-40%)60%。可知这桶原来共装油为:
(40-19.6)÷(1-40%)
=20.4÷60%
=34(千克)
答:这个桶原来共装油34千克
10、解析:
看图观察:
(10+10)÷(1- )=40(页)
(40+10)÷(1- )=100(页)
答:这本故事书共有100页。
『伍』 小学的数学知识点总结归纳
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。
3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。
(5)小学数与代数知识要点扩展阅读:
整数
1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。
16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公因数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒
『陆』 小学数与代数的概念,急!!!
一、整数和小数
1.最小的自然数是0,最小的一位数是1。
2.小数的意义:把整体“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
3.小数点左边是整数部分,依次是个位、十位、百位、千位……;小数点右边是小数部分,依次是十分位、百分位、千分位……
4.小数的分类:
有限小数 纯循环小数
小数 无限循环小数
无限小数 混循环小数
无限不循环小数(如: π=3.1415926……)
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上“0”或者去掉“0”,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数就扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数就缩小10倍、100倍、1000倍……
二、数的整除
1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.根据一个数能否被2整除,非0的自然数可分成“偶数和奇数”两类;能被2整除的数叫做偶数,不能被2整除的数叫做奇数。(最小的奇数是1,最小的偶数是2。)
5.根据一个数含有的约数个数的多少,非0的自然数可分为“1、质数、合数”三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数只有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。
(最小的质数是2,最小的合数是4。)
1—20以内的质数有:2、3、5、7、11、13、17、19
1—20以内的合数有:4、6、8、9、10、12、14、15、16、18
6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各个数位上的数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数可以用短除法来求;
互质关系的两个数最大公约数是1,最小公倍数是两数的乘积;
倍数关系的两个数的最大公约数是较小数,最小公倍数是较大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于这两个数的最小公倍数和最大公约数的乘积。
三、四则运算
1.一个加数= 和 - 另一个加数 被减数= 差 + 减数 减数= 被减数 - 差
一个因数= 积 ÷ 另一个因数 被除数= 商 × 除数 除数= 被除数 ÷ 商
2.在四则运算中,加、减法叫做一级运算;乘、除法叫做二级运算。如果算式中含有两级运算,要先做二级运算,后做一级运算,即先做乘除法,后做加减法。加法和减法互为逆运算;乘法和除法互为逆运算。
3.运算定律:
(1)加法交换律:a+b=b+a 两个数相加,交换加数的位置,它们的和不变。
乘法交换律:a×b=b×a 两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c) 三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
乘法结合律:(a×b)×c=a×(b×c) 三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c 两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c) 从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
除法的性质:a÷b÷c=a÷(b×c) 一个数连续除以两个数,等于这个数除以两个除数的乘积。
四、常见的数量关系式
1、速度×时间=路程 (路程÷时间=速度 、 路程÷速度=时间)
2、工作效率×工作时间=工作总量 (工作总量÷工作效率=工作时间 、工作总量÷工作时间=工作效率 )
3、单价×数量=总价 (总价÷数量=单价 、 总价÷单价=数量)
4、单产量×数量=总产量 (总产量÷单产量=数量 、 总产量÷数量=单产量)
五、方程
1. 方程:含有未知数的等式叫做方程。
2. 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3. 解方程:求方程解的过程叫做解方程。
六、分数和百分数
1. 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2. 分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
3. 分数和除法的联系:分数的分子相当于除法中的被除数,分母相当于除法中的除数。
分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:分数的分子相当于比的前项,分数的分母相当于比的后项。
4. 分数的分类:分数可以分为真分数和假分数两类。
5. 真分数:分子小于分母的分数叫做真分数。真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。
(大于1的假分数可以改写成带分数;等于1的假分数可以改写成整数。)
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘以或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:首先这个分数要是最简分数,其次如果这个最简分数的分母只含有2、5这两种质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。
七、量的计量
1.长度单位有:千米、米、分米、厘米、毫米,每相邻两个单位之间的进率都是“十”。
面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,每相邻两个单位之间的进率都是“百”。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),每相邻两个单位之间的进率都是“千”。
质量单位有:吨、千克、克,每相邻两个单位之间的进率都是“千”。
时间单位有:世纪、年、月、日、时、分、秒,它们之间的进率各有不同。
2.一年中的大月有:1、3、5、7、8、10、12月,共七个,每月31天。
小月有:4、6、9、11月,共四个,每月30天。
平年全年有365天;闰年全年有366天。(平年的二月有28天,闰年的二月有29天。)
3.一年有四 个季度,每个季度3个月。
4.平年、闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。通常每四年中有三个平年一个闰年,简称“四年一闰”。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。
复名数:带有两个或两个以上单位名称的叫做复名数。
6.名数的改写:把高级单位的名数化成低级单位的名数要乘进率;
把低级单位的名数聚成高级单位的名数要除以进率。
八、几何初步知识
1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的,不能量出长度。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边叉开的大小,叉开的越大,角越大。(角的大小与边的长短无关。)
4.计量角的大小的单位:度,用符号“°”表示。
5.小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角;角的两边在一条直线上的角叫做平角,平角=180°。
6.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
7.平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。
(平行线之间的距离处处相等。即平行线间的所有垂直线段的长度都相等。)
8. 三角形:由三条线段围成的图形叫做三角形。
9. 三角形的分类:(1)按角分:锐角三角形、钝角三角形、直角三角形。
(2)按边分:一般三角形、等腰三角形、等边三角形。(等边三角形是特殊的等腰三角形。)
10.三角形的三个内角和是180°。
11.四边形:由四条线段围成的图形。
12.圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
13.圆的半径、直径都有无数条。在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的二分之一。
14.轴对称图形:如果一个图形沿着一条直线对折,直线两恻的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
15.学过的图形中的轴对称图形有:圆、等腰三角形、等边三角形、长方形、正方形、等腰梯形
16.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
17。表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:物体所占空间的大小叫做物体的体积。
18.长方体、正方体都有12条棱,6个面,8个顶点。(正方体是特殊的长方体。)
19.圆柱的三个特点:(1)由三个面围成(2)两个底面是完全相同的圆(3)侧面是曲面
20.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。
21.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
22.圆周率π是一个无限不循环小数。π=3.141592653……
23.把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。
24.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
25.圆锥的体积是和它等底等高的圆柱的体积的,等底等高的圆柱的体积是圆锥体积的3倍。
26. 体积和底面积相等的圆柱和圆锥,圆柱的高是圆锥的 ,圆锥的高是圆柱的3倍。
九、比和比例
1. 比的意义:两个数相除又叫做两个数的比。
比例的意义:表示两个比相等的式子叫做比例。
2. 求比值:比的前项除以比的后项所得的商叫做比值。
3. 比的基本性质:比的前项和后项都乘上或除以相同的数(0除外),比值不变。
比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4.应用比的基本性质可以化简比;
应用比例的基本性质可以判断两个比是否能组成比例,也可以求比例里的未知项,也就是解比例。
5.用字母表示比与除法和分数的关系是: a:b=a÷b= (b≠0)
6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺 或 ( =比例尺)
实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
7.求比值的方法:根据比值的意义,用前项除以后项,最后的结果是一个数,可以是整数、小数或分数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),最后的结果只能是一个最简整数比。
8.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。用式子表示是: =k(一 定),用图表示正比例关系是一条直线。
9.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。用式子表示是:
x×y=k(一定),用图表示反比例关系是一条曲线。
十、简单的统计
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。 作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。 作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
十一、公式的整理
平面图形:
1.长方形: 周长=(长+宽)×2 即 : C长方形=(a+b)×2
面积=长×宽 即: S长方形=a×b
2.正方形: 周长=边长×4 即: C正方形=4a
面积=边长×边长 即: S正方形=a×a
3.平行四边形的面积=底×高 即: S平行四边形 =ah
4.三角形的面积=底×高÷2 即:S三角形=ah÷2= ah
5.梯形的面积=(上底+下底)×高÷2 即: S梯形 =(a+b)×h÷2
6.圆的周长=直径×3.14 即: C圆 =πd 或: 圆的周长=半径×2×3.14 即:C圆 =2πr
圆的面积=半径的平方×圆周率 即: S圆 =πr2
立体图形:
1.长方体
表面积=(长×宽+长×高+宽×高)×2 即:S表=(ab+ah+bh)×2
体积=长×宽×高 即: V =abh
2.正方体
表面积=棱长×棱长×6 即:S表=a×a×6
体积=棱长×棱长×棱长 即: V =a3
3.圆柱
侧面积=底面周长×高 即:s侧=ch
表面积=侧面积+两个底面积 即:s表=s侧+s底×2
体积=底面积×高 即:v圆柱=s底h
4.圆锥的体积=圆柱的体积÷3 即: V圆锥=sh÷3= sh
『柒』 小学 数与代数的知识点 要做手抄报
知识点一:整数
1、整数的范围
整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数
自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是若干个“1”组成,所以“1”是自然数的基本单位。1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
(2)正数
正数的定义 以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。
(2)负数
负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。
负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。
“0”既不是正数,也不是负数。
(4)整数与自然数的联系及区别
自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法
数的分级 按照我国的计数习惯,整数从个位起,每四个数位是一级。个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位 整数、小数都是按照十进制写出的数,其中一(个)、十、百…….是整数的计数单位。计数单位是按一定顺序排列的。
数位 各个计数单位所占的位置叫数位。如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数 指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法 十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
(2)整数的读法和写法
整数的读法 读整数时,从高位到低位,一级一级地读,读亿级、万级时,按照个级的读法去读,只要在后面加上“亿”字、“万”字就可以了,每一级末尾的“0”都不读出来,其他数位有一个“0”或连续几个“0”都只读一个零。
整数的写法 写整数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3、整数大小的比较
比较两个整数的大小,整数数位多的数比较大;整数数位相同的,要从高位依次看相同数位上的数字,相同数位上数字大的数比较大。
知识点二 小数
1、小数的意义
把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….
1、小数的读法和写法
小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十。
(2)小数的读法和写法
读小数时,整数部分按整数的读法读,整数部分是0的读作“零”,小数点读作“点”,小数部分可以顺次读出每个数位上的数字。
写小数时,整数部分按整数的写法写,整数部分是零的要写“0”,小数点点在个位的右下角,然后依次写出小数部分每个数位上的数字。
3、小数大小的比较
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……
4、数的改写与求近似数
(1)数的改写与省略这个数某一位后面的尾数写成近似数的方法
为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。
取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。
(2) 较大数的“改写”与“求近似数”的异同
相同点 都是改变原数的计数单位。根据要求用“亿”或“万”作单位。
不同点 “改写”只改变数的单位,不改变数的大小,用“=”表示。“求近似数”是用四舍五入法或“进一法”、“去尾法”,既改变了数的单位,又改变数的大小,用“≈”表示。
5、小数的分类与性质
(1)小数的分类
按小数的整数部分是否为0,小数分为纯小数和带小数。
纯小数 整数部分是0的小数叫做纯小数。
带小数 整数部不是0的小数叫做带小数。(纯小数都小于1,带小数都大于或等于1。)
按小数部分的倍数是否有限,小数可以分为有限小数和无限小数。
有限小数 小数部分的位数有限的小数,叫做有限小数。
无限小数 小数部分的位数无限的小数,叫做无限小数。
无限小数又可以分为无限不循环小数和无限循环小数两类。
循环小数 一个无限小数,从小数部分的某一位起,一个数定或几个数字依次不断地重复出现,这样的小数叫做无限循环小数。
循环节 一个循环小数的小数部分依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环小数的简便写法 写循环小数时,为了简便,一般只写出它的第一个循环节,并在循环节的首位和末尾数字上各点一个小圆点。
(2)小数的性质
小数的末尾添上“0”或者去掉“0”,小数的大小不变,(注意:是在“小数的末尾”而不是“小数点的后面”。)
(3)小数点位置的移动引起小数的大小变化
小数点向右移动一位、二位、三位、…….小数就扩大到原来的10倍、100倍、1000倍……小数点向左移动一位、两位、三位……小数就缩小到原来的 、 、 ……
(4)常见的质量单位、人民币单位、时间单位及各单位间的坦率
(5)平年、闰年的判断方法
公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
知识点三 分数
1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。
3、分数的分类
(1)真分数 分子比分母小的分数叫做真分数。
(2)假分数 分子比分母大或者与分母相等的分数叫做假分数。
4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。
6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。
7、最简分数 分子、分母是互质数的分数叫做最简分数。
8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。
10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。
分数化小数有两种情况:一般是分子除以分母能除尽,得到有限小数,如 =0.4;一种是分子除以分母除不尽,得到无限小数,如 =0.142857……
11、小数化为分数 原来有几位小数,就在1的的后面写上几个0
母,把原来的小数点去掉作分子,化成分数后,能约分的要约分。
12、分数的基本性质与小数基本性质的关系
分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0”
或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……