1. 小学数学公式大全
三角形的面积=底×高÷2。
公式
S=
a×h÷2
正方形的面积=边长×边长
公式
S=
a×a
长方形的面积=长×宽
公式
S=
a×b
平行四边形的面积=底×高
公式
S=
a×h
梯形的面积=(上底+下底)×高÷2
公式
S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高
公式:V=abh
长方体(或正方体)的体积=底面积×高
公式:V=abh
正方体的体积=棱长×棱长×棱长
公式:V=aaa
圆的周长=直径×π
公式:L=πd=2πr
圆的面积=半径×半径×π
公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
2. 小学公式大全
植树问题
1
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
2、
1倍数×倍数=几倍数
几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、
加数+加数=和
和-一个加数=另一个加数
7、
被减数-减数=差
被减数-差=减数
差+减数=被减数
8、
因数×因数=积
积÷一个因数=另一个因数
9、
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1
、正方形
C周长
S面积
a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2
、正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3
、长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
、长方体
V:体积
s:面积
a:长
b:
宽
h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5
三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
S面积
C周长
∏
d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
1
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
答案补充
长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000
千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年
1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,
闰年2月29天
平年全年365天,
闰年全年366天
1日=24小时
1时=60分
1分=60秒
1时=3600秒
小学数学几何形体周长
面积
体积计算公式答案补充
1、长方形的周长=(长+宽)×2
C=(a+b)×2
2、正方形的周长=边长×4
C=4a
3、长方形的面积=长×宽
S=ab
4、正方形的面积=边长×边长
S=a.a=
a
5、三角形的面积=底×高÷2
S=ah÷2
6、平行四边形的面积=底×高
S=ah
7、梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
8、直径=半径×2
d=2r
半径=直径÷2
r=
d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2
c=πd
=2πr
10、圆的面积=圆周率×半径×半径
3. 小学六年级数学公式大全
一.用字母表示运算定律或性质
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c)
乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
二.几何图形计算公式
(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2 C=(a+b)×2 ②正方形周长=边长×4 C=4a
③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr
(2)面积:即物体的表面或封闭图形的大小
①长方形的面积=长×宽 S=ab ②正方形的面积=边长×边长 S=a•a=a2
③平行四边形的面积=底×高 S=ah ④三角形的面积=底×高÷2 S=ah÷2
⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 ⑥圆的面积=圆周率×半径S=πr2
⑦直径d=2r 半径=直径÷2 r= d÷2 ⑧环形面积=外圆面积-内圆面积S环=S外-S内
【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R.
(3)表面积:立体图形的所有面的面积之和叫做它的表面积
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2
③圆柱体的侧面积=底面周长×高 S=Ch =2πrh
④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2
注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h
(4)体积:物体所占空间的大小叫体积
①长方体的体积=长×宽×高 V=abh ②正方体的体积=棱长×棱长×棱长 V=a×a×a=a3
③圆柱的体积=底面积×高V=sh=πr2h ④圆锥的体积=底面积×高÷3 V=1/3sh= 1/3πr2h
【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh即底面积×高.。
等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。
三.数量关系式
1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 工效×工时=工作总量 工作总量÷工效=工时 工作总量÷工时=工效
5、 加数+加数=和 和-一个加数=另一个加数
6、 被减数-减数=差 被减数-差=减数 差+减数=被减数
7、 因数×因数=积 积÷一个因数=另一个因数
8、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 被除数=除数×商+余数
注意:0.3÷0.2=1 。。。0.1 除数与被除数同时扩大100倍,商不变,余数也扩大100倍。
9 平均数=总数÷总份数 平均速度=总路程÷总时间
10.相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间 一个人的速度=相遇路程÷相遇时间-另一个人的速度
11.平均速度问题 平均速度=总路程÷(顺流时间+逆流时间)注意: 折(往)返=路程×2
12.浓度问题: 溶质(药)+溶剂(水)=溶液(药水) 溶质(药)÷溶液(药水)=浓度
溶液(药水)×浓度=溶质(药) 溶质(药)÷浓度=溶液(药水)
13.折扣问题: 折扣=现价÷原价 (折扣<1) 现价=原价×折扣 原价=现价÷折扣
利息=本金×年利率×时间(年) =本金×月利率×时间(月)
14比例尺=图上距离÷实际距离 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
税后利息=本金×利率×时间×(1-5%)
15追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
易错题:1、周长和面积不相等。 2、圆的面积与半径不成比例。 3、增加和扩大、缩小与减少的区别 4、地砖块数与面积的计算。 5、时间的进率60,平方米与公顷的进率是10000 6、一种立体图形转化为另一种立体图形,体积不变。 7、填空、应用题要注意单位的统一(易错);要求保留时,无要求用什么法,要结合实际用“四舍五入”还是“进一法”。 8、计算表面积时结合实际求哪些面。 9、 车轮、压路机前进的距离就是周长×转数。 10、数的改写用小数点表示,再添单位;精确到(保留时)看下一位并用“四舍五入”法表示,再添单位。 11、等底等高的三角形是平行四边形面积的一半;等底等高的圆柱体积是圆锥的3倍。 12、路程一定,速度和时间成反比。如A、B同走一段路时间比是5:4,A、B的速度比是4:5。(工作总量类似)。 13、看到高和垂线想到直角(符号)。 14、两点之间直线最短,点线之间垂线段最短;绕一点旋转就是以这点为顶点,作与这个点相关的两条边的垂线,定出另两个点。旋转时逆时针是向左。 15、确定方向要注意观测点。 16、计算时要留意跟整数相差一点的数.如9.9 ;10.1。 17、应用题分析时注意抓共同量或不变量分析。如实际与计划中的总量,男生转入人数时的女生人数;同一面积中换不同边长的地砖。 18、两个圆的面积比是半径比的平方倍;图形面积扩大的倍数是边长扩大的平方倍。
4. 小学数学必背公式大全
长方形的周长=(长+宽)×2 C=(a+b)×2;正方形的周长=边长×4 C=4a;长方形的面积=长×宽 S=ab;正方形的面积=边长×边长 S=a.a= a;三角形的面积=底×高÷2 S=ah÷2;平行四边形的面积=底×高 S=ah;梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2;直径=半径×2 d=2r 半径=直径÷2 r= d÷2;圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr;圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2. 公式 S= a×h÷2;正方形的面积=边长×边长 公式 S= a×a‘’长方形的面积=长×宽 公式 S= a×b;平行四边形的面积=底×高 公式 S= a×h。
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2;内角和:三角形的内角和=180度.;长方体的体积=长×宽×高 公式:V=abh;长方体(或正方体)的体积=底面积×高 公式:V=abh;正方体的体积=棱长×棱长×棱长 公式:V=aaa;圆的周长=直径×π 公式:L=πd=2πr
(4)小学公式大全扩展阅读:
从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程。
因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。
5. 小学数学公式大全
小学数学公式大全
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a×a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr^2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr^2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
二、单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分
1分=60秒 1时=3600秒
三、数量关系计算公式方面
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
五、特殊问题
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数+1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
(1)一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间
6. 小学数学公式大全
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a ²
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a³
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和
和-一个加数=另一个加数
7、 被减数-减数=差
被减数-差=减数
差+减数=被减数
8、 因数×因数=积
积÷一个因数=另一个因数
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
第一部分: 概念
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
第二部分:定义定理
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
第三部分:几何体
1.正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2.正方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
长方体的体积=长×宽×高 公式:V=a×b×h
3.三角形
三角形的面积=底×高÷2。 公式:S= a×h÷2
4.平行四边形
平行四边形的面积=底×高 公式:S= a×h
5.梯形
梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6.圆
直径=半径×2 公式:d=2r
半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr
圆的面积=半径×半径×π 公式:S=πrr
7.圆柱
圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高。 公式:V=Sh
8.圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
三角形内角和=180度。
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
第四部分:计算公式
数量关系式:
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
******************************************************
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
******************************************************
植树问题:
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
******************************************************
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
******************************************************
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
******************************************************
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
******************************************************
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
******************************************************
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
******************************************************
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
******************************************************
面积,体积换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公顷=10000平方米 1亩=666.666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
******************************************************
重量换算:
1吨=1000 千克
1千克=1000克
1千克=1公斤
******************************************************
人民币单位换算
1元=10角
1角=10分
1元=100分
******************************************************
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒