1. 小学六年级数学行程方面的解题方法
以下摘自网络。
行程问题。
概念
行程问题是反映物体匀速运动的应用题。行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。 相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。 相背而行的公式:相背距离=速度和×时间。(甲的速度×时间+乙的速度×时间=相背距离) 相向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差。 若在环形跑道上,(速度快的在前,慢的在后)追及距离=速度差×时间。 追及距离÷时间=速度差
编辑本段公式
流水问题
顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2
相遇问题(直线)
甲的路程+ 乙的路程=总路程
相遇问题(环形)
甲的路程+乙的路程=环形周长
编辑本段详述
要正确的解答有关"行程问题”的应用题,必须弄清物体运动的具体情况。如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追击)。 两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,此时的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,此时两个物体的追击的速度就变为了“两个物体运动速度的差”(简称速度差)。 当物体运动有外作用力时,速度也会发生变化。如人在赛跑时顺风跑和逆风跑;船在河中顺水而下和逆水而上。此时人在顺风跑是运动的速度就应该等于人本身运动的速度加上风的速度,人在逆风跑时运动的速度就应该等于人本身的速度减去风的速度;我们再比较一下人顺风的速度和逆风的速度会发现,顺风速度与逆风速度之间相差着两个风的速度;同样比较“顺水而下”与“逆流而上”,两个速度之间页相差着两个“水流的速度”。难怪古人会感叹:逆水行舟,不进则退。
编辑本段解法
设甲的速度为X千米/时,乙的速度为Y千米/时,甲从A地出发,乙从B地出发,当两人第一次相遇时,离A地4千米,也就是甲走了(4/X)小时,而此时距乙离开B地的距离为 〔Y×(4/X)〕千米,于是我们可以知道,整条路线的全程为S=4+〔Y×(4/X)〕,那么也可以清楚这道题目求的就是第一次相遇时离B地的这个距离,用这个距离与第二次两相遇时而到第二次相遇时离B地的3千米进行比较。因此,为了方便以后的说明,将这个距离[Y×(4/X)〕用J来表示。 第一次相遇后,甲需要走过的距离为3+〔Y×(4/X)〕,这样才能与乙第二次相遇,而在甲用同样的时间,乙则要走过距离为4+S-3的路程才能与甲相遇。于是两人的相同时间可以写成一个等式,如下: {3+〔Y×(4/X)〕}/X=(4+S-3)/Y (其中,S为全程距离,上面已经给出过了,这里为了写起来方便就不全写进去了,但做题目时最好还是全写进去,不然会看不明白的。) 整理上面这个式子,可得, 4Y^2-XY-5X^2=0 将这个式子因式分解为 (Y+X)(4Y-5X)=0 可得X与Y之间的关系式,Y=-X或 Y=5X/4 因为两人的速度不可能为负数,所以第一个关系式否掉,那么就是第二个关系式可用。 于是将这个关系式带入J这个距离式子中,可以得出J=(5X/4 )×4/X=5 于是,我们知道了,当甲与乙第一次相遇时,离B地的距离为5千米,而第二次相遇时,离B地的距离为3千米,所以两次相遇地点间的距离为2千米。
编辑本段行程问题类型有
1、流水行船问题 2、环形路上的多次相遇问题 3、电梯问题 4、发车问题 5、接送问题 6.追击问题 7、相遇问题 8 过桥问题
2. 小学数学一到六年级公式大全
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
不同地方教材可能不一样,这个应该比较全面了
小学教学没有必要死记公式,重在理解
3. 小学六年级数学(路程问题)
解:设全长共S千米
两人花费时间一样 所以路程比=速度比
甲走的版距离=S 乙走的距离=S-60
列式:S:(S-60)=5:4
4S=5S-300 S=300
乙第一权次相遇时走的距离=300×4/(4+5)=1200/9=400/3千米
乙共走的距离=300-60=240千米
所以相遇后乙走的距离=240-400/3=320/3千米
答:相遇后乙车行了320/3千米
4. 小学六年级数学的行程问题的应用题
1、货车速度=640/5-70=128-70=58千米/小时
2、货车速度=560/5.6-55=100-55=45千米/小时
3、另一辆摩托车的速度=329/3-44=197/3千米/小时
4、小车行完全程=4/(1/2)=8小时
大车4小时行全程的1/12×4=1/3
公路全长=84/(1/2-1/3)=84×6=504千米
5、405/(45+45)=4.5小时相遇
6、摩托车的速度=(484-40×1.5)/4-40=424/4-40=106-40=66千米/小时
7、全长=(75+75+2.5)×8+52=152.5×8+52=1272米
8、
8.一辆汽车从甲地开往乙地,速度是每小时50千米,从乙地返回甲地时,由于速度提高了,结果只用了2小时就到达了甲地,甲乙两地相距多少千米?
9、相遇时间=1/(1/10+1/15)=6小时
6小时慢车走1/15×6=2/5
那么全程=288/(1-2/5)=480千米
10、甲行了全程的(15-3)/30=2/5
乙行了全程的1-2/5=3/5
乙一共行的时间=15分钟
相距(80×15)/(3/5)=120×5/3=200千米
11、相遇时间=1/(1/14+1/21)=42/5小时
两地相距=126/[(1/14-1/21)×42/5]=126*5=630千米
12、相遇时间=1/(1/12+1/15)=20/3小时
甲乙相距=98/[(1/12-1/15)×20/3]=98/(1/9)=882千米
13、距离=50×2+(55+50)×4=520千米
14、需要时间=(40×8)/(40-8)=320/32=10小时
15、速度和=1134/10.5=108千米/小时
客车速度=108/(1+2)=36千米/小时
16、相遇时间=1/(1/10+1/15)=6分钟
两村相距150/(1/2-6/15)=150/(1/10)=1500米
5. 小学六年级数学毕业考必考的知识点是什么
小学数学总复习资料
【常用的数量关系】
1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数
2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数
3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度
4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价
5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间;
工作总量÷工作时间=工作效率;
6、加数+加数=和; 和-一个加数=另一个加数
7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数
8、因数×因数=积; 积÷一个因数=另一个因数
9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数
【小学数学图形计算公式】
1、正方形(C:周长, S:面积, a:边长)
周长=边长×4; C=4a
面积=边长×边长; S=a×a
2、正方体(V:体积, a:棱长)
表面积=棱长×棱长×6; S表=a×a×6
体积=棱长×棱长×棱长; V= a×a×a
3、长方形(C:周长, S:面积, a:边长, b:宽 )
周长=(长+宽)×2; C=2(a+b)
面积=长×宽 ; S=a×b
4、长方体(V:体积, S:面积, a:长, b:宽, h:高)
(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)
(2)体积=长×宽×高; V=abh
5、三角形(S:面积, a:底, h:高)
面积=底×高÷2 ; S=ah÷2
三角形的高=面积×2÷底 三角形的底=面积×2÷高
6、平行四边形(S:面积, a:底, h:高)
面积=底×高; S=ah
7、梯形(S:面积, a:上底, b:下底, h:高)
面积=(上底+下底)×高÷2; S=(a+b)×h÷2
8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )
(1)周长=π×直径π=2×π×半径; C=πd=2πr
(2)面积=π×半径×半径; S= πr2
9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )
(1)侧面积=底面周长×高=Ch=πdh=2πrh
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
(和+差)÷2=大数; (和-差)÷2=小数
13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题。
和÷(倍数-1)= 小数; 小数×倍数=大数(或者:和-小数=大数)
14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数。
差÷(倍数-1)= 小数; 小数×倍数=大数(或者:小数+差=大数)
15、相遇问题: 相遇路程=速度和×相遇时间;
相遇时间=相遇路程速度和;
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量; 溶液的重量×浓度=溶质的重量;
溶质的重量÷溶液的重量×100%=浓度; 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题: 利润=售出价-成本; 利润率=利润÷成本×100%;
利息=本金×利率×时间; 涨跌金额=本金×涨跌百分比;
税后利息=本金×利率×时间×(1-利息税)
【常用单位换算】
(一)长度单位换算
1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米
(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;
1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米
(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;
1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升
(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤
(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分
(六)时间单位换算: 1世纪=100年; 1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】
1日=24小时; 1时=60分=3600秒; 1分=60秒;
6. 小学数学三至六年级知识点
找了几个版的
苏教:
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
北师:
小学数学四年级前四个单元知识点总结
1、路程速度时间公式:s=vt v=s÷t t=s÷v
2、正方形周长公式:C=4a
3、正方形面积公式:S=a2
4、长方形周长公式:C=2(a+b)
5、长方形面积公式:S=ab
6、加法交换律:a+b=b+a
7、加法结合律:a+b+c=a+(b+c)
8、乘法交换律:a·b=b·a
9、乘法结合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角
12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分类:锐角三角形,直角三角形,钝角三角形
14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。
15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形
16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001-----
18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有稳定性
22、三角形任意两边之和大于第三边
23、三角形的内角和是180度
24、学会画角
25、会比较小数的大小
26、单位换算
长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
质量单位:1千克=1000克 1吨=1000千克=1000000克
钱的换算:1元=10角=100分 1角=10分
时间单位:1时=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小时
一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。
面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公顷=10000平方米 1平方千米=100公顷=1000000平方米
7. 小学数学三至六年级知识点和概念
行程问题是必考
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
相遇问题:(直线):甲的路程+乙的路程=总路程
相遇问题:(环形):甲的路程 +乙的路程=环形周长
追及问题:追击时间=路程差÷速度差(写出其他公式)
追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间
追及问题:(环形):快的路程-慢的路程=曲线的周长
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度:船速+水速 逆水速度=船速-水速
静水速度:(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
流水问题:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2
1、一舰艇和一货轮同时从A港口前往相距100千米的B港口,舰艇和货轮的速度分别为100千米/时和20千米/时,舰艇不停地往返于A、B两港口巡逻(巡逻掉头的时间忽略不记)。求货轮从A港口出发后与舰艇第二次相遇时用了多长时间?
100*4/(100+20)=10/3小时
2、甲乙两车同时分别从AB两站相对开出.第一次在离A站90千米处相遇.相遇后两车一原速继续前进,到达对方出发站后立刻返回,第二次相遇在离A站50千米处.求AB两站之间的距离.
第一次相遇甲乙两车共行了1个全程,甲车行了90千米
第二次相遇甲乙两车共行了3个全程,甲车行了90×3=270千米
同时,甲车行的还是2个全程少50千米
AB两站之间的距离是
(90×3+50)÷2=160千米
8. 一到六年级人教版数学书所有知识点。
小学数学基础知识整理
一、小学数学基础知识整理(一到六年级)
小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、读懂理解会应用以下定义定理性质公式
(一)、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
(二)、数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
(三)、一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
四、小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
9. 苏教版小学六年级数学知识点整理
小学数学复习考试知识点汇总
一、小学生数学法则知识归类
(一)笔算两位数加法,要记三条
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;
3、末位不管有几个0都不读。
(五)四位数写法
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条
1、相同数位对齐;
2、从个位减起;
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
(十三)小数大小的比较
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
(二十)同分母分数加减的法则
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则
一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,把百分号去掉,同时小数点向左移动两位。
(二十七)把分数化成百分数和把百分数化成分数的方法
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;
把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类
1、什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、加法各部分的关系:
一个加数=和-另一个加数
4、减法各部分的关系:
减数=被减数-差 被减数=减数+差
5、乘法各部分之间的关系:
一个因数=积÷另一个因数
6、除法各部分之间的关系:
除数=被除数÷商 被除数=商×除数
7、角
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角是直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角是锐角。
(7)什么是钝角?
大于90°而小于180°的角是钝角。
(8)什么是周角?
一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.
8、(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
有等腰三角形里,相等的两个边叫做等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?什么叫三角形的底?
从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形内角和是180°.
10、四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平等四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平等的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。
13、加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、什么是被减数?什么是减数?什么叫差?
在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、加法各部分间的关系:
和=加数+加数 加数=和-另一加数
17、减法各部分间的关系:
差=被减数-减数 减数=被减数-差 被减数=减数+差
18、乘法
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、除法
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中,已知的一个因数叫除数。
(4)什么是商?
在除法中,求出的未知因数叫商。
20、乘法各部分的关系:
积=因数×因数 一个因数=积÷另一个因数
21、(1)除法各部分间的关系:
商=被除数÷除数 除数=被除数÷商
(2)有余数的除法各部分间的关系:
被除数=商×除数+余数
22、什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、什么是单名数?
只带有一个单位名称的数叫单名数。
24、什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、什么是有限小数?
小数部分的位数是有限的小数叫有限小数。
28、什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、什么是方程?
含有未知数的等式叫方程。
34、什么是解方程?
求方程解的过程叫解方程。
35、什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。
36、什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、什么是偶数?
能被2整除的数叫偶数。
38、什么是奇数?
不能被2整除的数叫奇数。
39、什么样的数能被5整除?
个位上是0或5的数能被5整除。
40、什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、什么是公约数?什么叫最大公约数?
几个数公有的约数叫公约数。其中最大的一个叫最大公约数。
46、什么是互质数?
公约数只有1的两个数叫互质数。
47、什么是公倍数?什么是最小公倍数?
几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。
48、分数
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、怎么比较分数大小?
(1)分母相同的两个分数,分子大的分数比较大。
(2)分子相同的两个分数,分母小的分子比较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整分数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、比
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、长方体和正方体
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(或立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体体积?
物体所占空间的大小叫做物体的体积。
52、圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、比例
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、圆柱
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
三、小学数学量的计算单位及进率归类
1、长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷 1平方千米=1000000平方米
1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、质量单位及进率:吨、千克、公斤、克
1吨=1000千克 1千克=1公斤 1千克=1000克
5、时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年 1年=12月 1天=24小时 1小时=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,闰年2月29天)
四、常用计算公式表
1、长方形面积=长×宽,计算公式S=ab
2、正方形面积=边长×边长,计算公式S=a×a=a2
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2
4、正方形周长=边长×4,计算公式C=4a
5、平行四边形面积=底×高,计算公式S=ah
6、三角形面积=底×高÷2,计算公式S=a×h÷2
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2
8、长方体体积=长×宽×高,计算公式V=abh
9、圆的面积=圆周率×半径平方,计算公式V=πr2
10、正方体体积=棱长×棱长×棱长,计算公式V=a3
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh
12、圆柱的体积=底面积×高,计算公式V=sh
1、数据的收集和整理
2、表的意义:把收集到的数据整理以后制成表格,用来反映情况,分析具体问题,这样的表格叫做统计表。
3、常见统计表的分类:
(1)、单式统计表:只含有一个统计项目的统计表。
(2)、复式统计表:含有2个或2个以上统计项目的统计表。
(3)、百分数统计表:不仅表明各统计项目的具体数量,而且表明数量间的百分比的统计表。
4、统计表的制作步骤和方法。
(1)收集数据、整理数据。
(2)根据资料和制作表要求确定统计表的格式和项目。
(3)根据整理好的数据填表。
(4)填写好总计和合计。
(5)写出制表的名称和制表的时间,必要时注明制表人。
5、条形统计图的意义:用一个单位长度表示一定的数量,根据数量画出长短不一的直条,然后把直条按照一定的顺序排列起来。
6、折线统计图的意义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连起来。
7、扇形统计图:用一个圆表示总量,用圆中大小不同的扇形表示各部分数量所占的百分比。
8、统计量:包括平均数、众数、中位数。
9、统计平均数的意义:平均数能较好地反映一组数据的整体水平。
10、众数:在一组数据中,出现次数最多的那个数据叫众数。
11、中位数:把收集到的某一对象的有关数据,按大小顺序排列,处于中间位置的那个数据(或中间两个数据的平均数)叫中位数。
12、确定现象与不确定现象的认识a、不确定现象:生活中,有些事的发生是不确定的,一般用“可能发生”来描述。
13、确定现象:生活中,有些事情的发生是确定的。一般用“一定发生”或“不可能发生”来描述。
14、可能性大小的表示:用数字表示“一定能”“不可能”。 “一定能”这种可能性用1来表示,“不可能”用0来表示。
1.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形) 只有一条高。
2.圆柱的体积:
公式的推导:利用转化的策略。
把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。根据长方体的体积公式推导出圆柱的体积公式。
V=sh(底面积×高)
当然在计算圆柱体积的过程中,还有一些变式。如已知半径、直径、底面周长等。
例如:
已知底面半径是10厘米,高是12厘米,求圆柱的体积。
已知底面直径是4分米,高是8分米,求圆柱的体积。
已知圆柱的底面周长是12.56分米,高5分米,求圆柱的体积。
3.圆锥的体积:
通过操作观察讨论获得:圆锥的体积是与它等底等高的圆柱体积的1/3()圆柱的体积是与它等底等高圆锥体积的3倍。
V=1/3sh
4.关于圆锥的一些拓展提高,将会在下面的学习中遇到。
(1)等底、等高的圆柱体积与圆锥的体积比是3:1
一、知识点:1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数