㈠ 小学数学概念.知识点.总结之类的...
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
220
㈡ 人教版小学数学概念知识
怎样把一个多位数改写成以万或亿为单位的数?
答:在万位(亿位)右回下角点上小数点,后答面加万(亿)字。同时要根据要求保留多少位小数,看看是用四舍还是或者进一法还是去尾法来决定。
怎样把一个多位数省略万或亿后面的数?
答:方法同上,就是去掉小数部分就是了,关键还是要根据要求用四舍还是或者进一法还是去尾法来决定。
奇数,偶数的意义,最小的奇数,最小的偶数?
答:2的倍数减1是奇数(2n-1),或者个位上是1、3、5、7、9的整数为奇数;2的倍数为偶数(2n)或者个位上是0、2、4、6、8的整数是偶数。最小的奇数是1,最小的偶数是0(2002年后,0是自然数,也是最小的偶数)
注意:n是正整数。
我有小学数学知识卡片一套23张(像上边的3张那样的),基本囊括小学所有应知应晓的基础知识。要的话给个邮箱。
㈢ 小学数学概念有哪些
小学数学知识概念公式汇总
小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。
必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
奉上,望采纳!
㈣ 小学数学基础知识概念
六年级数学上册概念与公式汇总
1.分数乘整数的意义与整数乘法的意义相同版,就是求几个相权同加数的和的简便运算。
2.
(1)分数乘整数的运算法则:分子与整数相乘,分母不变。
(2)分数乘分数的运算法则:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
3.积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。当b
>1时,a×b
>a.
一个数(0除外)乘小于1的数,积小于这个数。当b
<1时,a×b
评论
0
0
加载更多
㈤ 小学数学概念性基础知识总复习
毕业班复习- -
关于毕业班的复习,一直是让师生们头疼的一个问题。在这个阶段,要做的事情很多,比如知识的整理,后进生的“突击”,优生的提升,还有面上的关注……如此等等,让老师往往“心力交瘁”。
要想把复习工作做好,依我的切身体验,大约有以下几点(如有时间,再与大家详细交流) ——
• 只有登高,方能望远。希望老师们能够站得“高”一点,一定要认真研究“课程目标”和学生的“学情”,制定方案,把“力量”用在刀刃上。如果你感到无所适从,请不要急急而行,先冷静下来,用更多的时间思考可能是一个好办法。
• 欲速则不达。复习阶段学生接受的“训练量”(信息量)是很大的,不要搞单纯的“刺激 — 反应”式的机械训练,这样往往费力不讨好,有些学生,特别是“学困生”很容易“疲”,信心的丧失比能力的缺失更可怕。提高复习的“有效性”比单纯提高训练量来得应该更有效。
• 让学生成为“复习”的主人。就如我们上面提到的让学生自己出题,这样的方法通常很有效(经过试验),但是也一定不要脱离教师的“主导”,记住是“自主”学习,而不是“自由”学习,这对老师的要求要高一些。
• 变换形式,让复习变得不再枯燥。许多老师可能都曾遇到在复习阶段,试题满天飞的问题,复习阶段的课堂就变成了“做题—— 订正——再做题”的固定模式,毫无生趣而言。这样的形式不是一点不需要,因为孩子还是需要在这个过程中获得一些关于“应考”的一些体验。但是,日久生厌,自然会影响复习的效率。这时,老师需要冷静分析,在“这样做”和“那样做”之间做出权衡。举个例子,如果我分析在接下来需要复习的几个知识点中孩子普遍会出现哪几个问题,那么,我就会与学生一同商量,制定出克服办法,然后再做题,这样孩子大多能够在做题中获得成功的体验。这让我想起曾经听过一个治疗胃病的方法,对学困生非常有用,那就是“少吃多餐”,大家想想,为什么少吃多餐有助消化? :)
• 螺旋上升,前后呼应,让整个复习阶段成为一个有机的整体。这样,复习过程成了真正促进孩子发展的过程,而不单单是“应试”。不要孤立看待每一个复习过程中遇到的知识点,要分析他们之间的联系。对于复习进程的表述不应该是一条一直指向目标的直线,而是螺旋上升的“曲线”,孩子最终能力的达成往往是需要“迂回”的,因此,老师应该理解学生在复习过程中可能出现的“反复”,对此应该积极对待,正确引导。
• 注意应考心理的引导,让师生都能以愉快的心理面对挑战。不要给学生“大难临头”的感觉,这样做,除了增加孩子的心理负担,一般不会有好的效果,或者只能是短时间的。
一、小学数学毕业总复习的目的意义
小学毕业总复习是小学数学教学的重要组成部分,是对学生全面而系统地巩固整个小学阶段所学的数学基础知识和基本技能,提高知识的掌握水平,进一步发展能力。因此,多年的毕业教学,我都十分重视小学毕业阶段的复习整理工作。而毕业总复习作为一种引导小学生对旧知识进行再学习的过程它应是一个有目的,有计划的学习活动过程。所以,在具体实施前必须制定出切实可行的计划,以增强复习的针对性,提高复习效率。
二、小学数学毕业总复习的任务
从小学毕业总复习在整个小学数学教学过程中所处的地位来看,它的任务概括为以下几点:
1、系统地整理知识。实践表明,学生对数学知识的掌握在很大程度上取决于复习中的系统整理,而小学毕业复习是对小学阶段所学知识形成一种网络结构。
2、全面巩固所学知识。毕业复习的本身是一种重新学习的过程,是对所学知识从掌握水平达到熟练掌握水平。
3、查漏补缺。结合我镇小学实际,大多采取小循环教学,学生在知识的理解和掌握程度上不可避免地存在某些问题。所以,毕业复习的再学习过程要弥补知识上掌握的缺陷。
4、进一步提高能力。进一步提高学生的计算、初步的逻辑思维、空间观念和解决实际问题的能力。让学生在复习中应充分体现从“学会”到“会学”的转化。
三、小学数学毕业总复习内容的组织
九义新教材在教材的编排体系上给我们复习创造了有利条件。教材在统计的初步知识后安排了总复习内容,以多个知识点形成六大知识结构体系,并加以练习。这是旧教材所无法相比的。在复习中,要充分利用教材,合理组织内容,适当渗透,拓展知识面。
四、小学数学毕业总复习过程的安排
由于复习是在原有基础上对已学过的内容进行再学习,所以,学生原有的学习情况直接制约着复习过程的安排。同时,也要根据本班实际复习对象和复习时间来确定复习过程和时间上的安排。结合我班实际,从4月26日进入总复习阶段,共计80课时,复习过程和时间安排大致如下:
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
小学语文是义务教育阶段的一门基础学科,担负着全面提高学生语文素养的重任。经过六年的学习,大多数学生已具备了一定的语文素养,但是由于学生的个体差异,导致了小学生语文素养的参差不齐。在小学生即将结束小学生活的这段时间里,我们有责任集中精力,抓住时机,系统地引导学生复习小学阶段应掌握的知识,最大限度地提高每个学生的语文素养。
从“标准”入手,明确复习的要求:
学生在毕业时,应基本达到《语文课程标准》的要求。复习时,要根据《语文课程标准》及学生“过程性”的学习情况,有针对性地制定出相关复习要求,各部分的重点要求是:
(一)、基础知识
1、汉语拼音。
能读准声母、韵母、声调和整体认读音节;能准确地拼读音节,正确书写声母、韵母和音节;能认识大写字母,并能熟记《汉语拼音字母表》
2、汉字。
认识常用汉字3000个左右,其中2500个会写,要能读准字音,认清字形,了解字义,养成正确的写字习惯;会查字典;能初步辨析字的音、形、义,掌握学过的常用的多音字,注意不写错别字。
3、词语。
能正确地读出和写出学过的词语;能根据词义轻重、范围大小、感情色彩、词语搭配等方面辨析词义,进行归类或顺序排列;学会在具体的语言环境中准确地理解词义;注意积累词语,并能在口头语言和书面语言中正确运用。
4、句子。
熟悉句子的类型;能运用学过的常用词语(包括关联词语)造出思想健康、用词准确、意思完整的句子;能指出句子中的毛病,并加以改正;会区分和运用常用的几种修辞方法;熟练地进行句式互换、扩句和缩句;通过理解、分析句子,能体会句子表达的意思和含义,加深对课文内容的理解。
5、标点。
能正确地使用句号、问号、叹号、逗号、冒号、引号、顿号、分号、书名号和省略号。
(二)、阅读
1、在阅读中能揣摩文章的表达顺序,体会文章的思想感情及表达方法,在交流和讨论中,敢于提出自己的看法,作出自己的判断。
2、阅读说明性文章,能抓住要点,了解文章的基本说明方法;阅读叙事性作品,了解事件梗概,简单描述自己印象最深的场景、人物、细节,说出自己的感受;阅读诗歌,大体把握诗意,想像诗歌描述的情境,体会诗人的情感。
3、能背诵优秀诗文160篇(段);课外阅读总量不少于150万字。
(三)、习作
1、能写简单的记叙文和想像作文,能根据习作内容表达的需要,会分段表述。
2、会写读书笔记和常见的应用文。
3、习作能做到内容具体,感情真实,思想健康,有一定条理。
4、会修改自己的习作,并能主动与他人交换修改,做到语句通顺,行款正确,书写规范、整洁。
5、40分钟能完成不少于400字的习作。
(四)口语交际
1、认真耐心地听别人讲话,能理解主要意思,并能转述。
2、能清楚明白地口述见闻,稍作准备,能围绕一个意思,当众作2、3分钟的发言,举止大方,语句比较通顺连贯。能主动积极地进行口语交际
3、养成专心听讲、认真思考的习惯。养成先想后说的习惯,说话有礼貌。
4、听讲话、看影视,能转述主要内容。
以上所列项目是小学生通过五年的学习,在语文基础知识方面、阅读方面、习作方面、口语交际方面应达到的基本要求,以上要求是互相融合的,不能单独地复习一条而舍弃另一条。教学时要将以上条目展示给学生,让学生对照要求,找到自己的不足,为下一步复习明确目的。
㈥ 小学数学基本知识的学习主要包括小学数学概念的学习小学数学什么的学习以及小
小学数学基本知识的学习主要包括小学数学概念的学习
小学生概念学习在小学阶段的教学中是一个重点、也是难点,小学生只有了解了知识的概念才能更好了解知识、学习知识。探讨小学生数学概念学习的心理特点,才能从小学生的个性出发,教师改进策略,采用更好的方法来让小学生学习数学知识。对于小学生数学概念学习心理特点及教学策略这一课题,我们可以从小学生数学概念学习的重要性、小学生的心理发展阶段特点及小学生学习数学概念的心理特点、学习数学概念的心理过程以及教师在小学数学概念教学中的对策等四个方面来探讨。
(一)小学数学概念学习的重要性
数学概念是数学知识结构中的基本材料,也是数学认知结构的重要组成部分。在数学教学中,使学生正确掌握数学概念是理解掌握数学原理、形成基本技能的关键,也是培养学生数学能力、发展学生智力的基础。这就要求教师必须十分重视小学数学概念教学,把它放到极端重要的地位。
(二)小学生的心理发展阶段特点及学习数学概念的心理特点
皮亚杰认为,7到11岁的儿童处于具体运算阶段。具体运算阶段具有以下特点:思维运算离不开具体事物的支持,只能对当时情景中的具体事物的性质和各事物之间的关系进行思考,思维对象限于现实所提供的范围。
㈦ 小学数学概念大全
你好!你是教师可到新华书店去买这方面的书,你是学生或家长,就把小学数学书拿出来,一本一本的从头把有关概念抄一遍,抄在采集本上。到开校还来得及,也算是复习一遍。祝:好好学习,天天向上。
㈧ 小学概念全部
全部小学概念
小学,是人们接受最初阶段正规教育的学校,是基础教育的重要组成部分。一般6-12岁为小学适龄儿童,现阶段小学阶段教育的年限是6年。小学教育阶段后为中学教育阶段。
字意
“小学”二字最早并不专门指学校。西汉时称“文字学”为“小学”,唐宋以后又称“小学”为字学。读书必先识字,掌握字形、字音、字义,学会使用。周朝儿童入学,首先学六甲六书(六甲指儿童练字用的笔画较简单的六组以甲起头的干支。六书即指事、象形、形声、会意、转注、假借),所以从前把“文字学”称“小学”,“小学”之名即由此而得。 盖小学者,国故之本,王教之端,上以推校先典,下以宜民便俗,岂专引笔画篆、缴绕文字而已。苟失其原,巧伪斯甚。 ——《国故论衡·小学概说》 小学,即中国的“传统语言文字学”,必须有“传统”二字,因为它不是指现代的语言文字学。通常说“小学”即文字、音韵、训诂,这样说是不甚合适的,因为小学的这“三门”原本是“浑然一体”的,文字、音韵、训诂不是孤立存在的,所以,这里这样强调一下。
古汉语文字学
“小学”初见于《大戴礼记·保傅篇》:“及太子少长知(女已)色则入于小学,小学者所学之宫也。……古者八岁而就外舍,学小艺焉,履小节焉。”西周时奴隶社会的全盛时期,人分等级,当时能够接受教育的只是贵族。关于小艺,《周礼·保氏》上说:“保氏掌谏王恶而养国子之道,乃教六艺:一曰五礼,二曰六乐,三曰五射,四曰五驭,五曰六书,六曰九数。”又“乃教之六仪:一曰祀祭之容,二曰宾客之容,三曰朝廷之容,四曰丧纪之容,五曰军旅之容,六曰车马之容。”可见在周代教育中,小学本指学习六艺(小艺)和六仪(小节),后来小学含义逐渐缩小,仅指六艺之一的“书”了,及专指关于语言文字的学习。 东汉崔寔《四民月令》上记载:“正月:农事未起,命成童以上入太学,学五经,不见冰释,命幼童入小学学篇章。”“小学”含文字之义始于此。可见古代“小学”是指语言文字方面的学习。 “小学”在古代就是古汉语文字学。 一,什么是小学? 即语言文字学 。 古代小学先教授六书,所以把研究文字训诂音韵方面的学问叫小学。 《汉语文字学史》增订本
每个文字具有三个部分:1.字形;2.字义;3.字音。 在汉代,分别不很显著。 宋末王应麟《玉海》已分成三种:体制.训诂.音韵。 清代的《四库全书》,把小学书分为:训诂.字书.韵书三类。 小学附庸于经学,以经学为大学,故称语言文字之学为小学。分音韵、文字、训诂三。 下文可供参考: “中国传统语言学”是指中国古代研究语言文字的学问。这门学问古代称为“小学”。“小学”开始是指为贵族子弟设置的初级学校,《大戴札·保傅篇》云:“古者年八岁而出就外舍,学小艺焉,履小节焉,束发而就大学,学大艺焉,履大节焉。”这类学校要教授学童识字,许慎《说文解字叙》云:“《周礼》八岁入小学,保氏教国子,先以六书。”段玉裁注云:“国子者,公卿大夫之子弟,师氏教之,保氏养之,而世子亦齿焉。六书者,文字声音义理之总汇也。”有关文字的学问因之渐被称为“小学”。称文字之学为小学始于西汉刘向、刘歆父子,《汉书·艺文志》谓汉法,“太史试学童,能讽书九千字以上,乃得为史,又以六体试之,课最者以为尚书御史史书令史。吏民上书,字或不正,辄举劾。”
小学教育
初等教育机构最早产生于十六世纪的德国,由城镇主办,教习实用知识和新教教义。十七世纪初,这种学校逐渐增多,成为实施义务教育的机构。欧洲各国和日本在资产阶级革命以后,也相继成立。现代学堂和教育制度是西方传教士和中国留日学生引入中国的。 19世纪末20世纪初,中国现代教育奠基人何子渊、丘逢甲等人开风气之先,排除顽固守旧势力的干扰,成功引入西学(美式教育),创办新式学校,将平民教育纳入满清朝庭的视野。清政府迫于形势压力,不得不对教育革新网开一面,于1905年末颁布新学制,废除科举制,并在全国范围内推广新式学堂,宣统元年(1909年),地方科举考试真正停止以后,西学逐渐成为学校教育的主要形式。 “小学堂”划分为初等小学堂和高等小学堂, 小学
国民政府于1915年改初等小学堂为国民学校,“以授以国民道德之基础及国民生活所必需之普通知识技能为本旨”。六岁入学,修业四年,毕业后视具体情况可升入高等小学校〔修业三年〕。另设预备学校,同国民学校、高等小学校平行,“以施以初等普通教育、预备升入中学为本旨”。国民学校分前期〔四年〕和后期〔三年〕。1922年,国民学校仍改为初等小学校,取消预备学校。1940年,国民政府实行所谓“管、教、养、卫一体”,规定各乡设中心国民学校(相当于中心小学),由乡长兼任乡壮丁队长和校长,各保设国民学校(相当于村小),校长由保长兼任。 中华人民共和国成立后,在乡镇(人民公社)一级设置一所中心小学,在各村(生产大队)设村小。随着近年老龄化加速,幼儿人口比重下降,小学生源减少,各村小开始撤并,很多地方仅保留寄宿制中心小学,使得路途遥远的学生上学极为不便。 新中国的小学学制,废除了民国时期的初小和高小之分,实行一贯制小学,先后有五年制和六年制小学。近年来,由于推行九年制义务教育,小学升初中不再实行考试。现在深圳市小学及初中已经不再收取本地户籍学生的学费,只收取6元体检费。
㈨ 小学的知识简介
文档,下载就行了,祝你成功!!