『壹』 小学六年级数学计算题100道要有答案的
1. 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船? 设从乙船抽出x吨油,则 595+x=(225-x)×4 595+x=900-4x 4x+x=900-595 5x=305 x=61 答:必须从乙船抽出61吨油给甲船. 2. 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离. 解:设甲第二次从西镇出发到东镇所用的时间为x小时,则 15x=10×(0.5×3)+10(x-0.5) 15x=15+10x-5 15x-10x=15-5 5x=10 x=2 代入15x=15×2=30 答:东西两镇的距离是30千米. 3. 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁? 解:设哥哥现在的年龄为x,则 方程两边同乘以3,得 6x-90=90-3x-x 6x+4x=90+90 10x=180 x=18 代入30-x=30-18=12 答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁. 4. 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少? 解:设小强买了x个练习本,则 0.6×(x-2)=0.4×(x+3) 0.6x-1.2=0.4x+1.2 0.6x-0.4x=1.2+1.2 0.2x=2.4 x=12 代入0.6×(x-2)=0.6×(12-2)=6 6÷12=0.5 答:小强买了12个练习本,每本价格0.5元. 5. 粮库内存有大米若干包,第一次运出库存大米的一半多20包,第二次运出剩下的一半少10包,第三次运进200包,粮库还有260包,求粮库原有大米多少包? 解:设粮库里原有大米x包,则 x=240 答:粮库原有大米240包. 6. 李钢骑自行车从甲地到乙地,先骑一段上坡路,再骑一段平坦路,他到乙地后,就立即返回甲地,来回共用了3小时,李钢在平坦路上比上坡路每小时多骑6千米,下坡路比平坦路每小时多骑3千米.已知第一小时比第二小时少骑5千米(第二小时骑了一段上坡路,一段平坦路),第二小时比第三小时少骑3千米,那么:(1)李钢上坡路上用了多少分钟?(2)下坡路上用了多少分钟?(3)甲乙两地的距离是多少千米? 解:(1)因为上坡路比平坦路每小时少骑6千米,而第一小时比第二 小时,所以上坡路共用时间: (2)设第三小时走了x小时平坦路,则下坡路走了1—x小时,所以 6x+(6+3)(1-x)=8 6x+9(1-x)=8 6x+9-9x=8 9-3x=8 3x=9-8 所以下坡路共用60-20=40(分钟). (3)设上坡路每小时走x千米,则平坦路每小时走x+6千米,下坡路每小时走x+6+3千米,于是: 方程两边同乘以6,则 7x=4(x+9) 7x=4x+36 3x=36 x=12(小时) (千米答:上坡路共用70分钟,下坡路共用40分钟,甲乙两地相距24.5千米.) 595+x=(225-x)×4 15x=10×(0.5×3)+10(x-0.5) 6x-90=90-3x-x 0.6×(x-2)=0.4×(x+3) 6x+(6+3)(1-x)=8 7x=4(x+9) 1/10=X/15 (9+x)/(30+x)=40% 11/9(x-1/4x)=(100-x+1/4x) X+5/4X+7/6X=615 (x-20)-(1245-x+20)=5 x+82-(896-x)=128 x/(x-0.7)=1.25 x+2x-2+3x+2=96 3.7*70+185.2=x+(2.5+3.7)*60 14x=16+6x 106x+90+82x=1500 3x+9x+x=13 18-1.2χ=6 20-0.15χ=5 Χ+0.4χ=28 Χ+0.2χ=3.12 3χ+5χ=80 15χ=60 0.4χ=4.2 2χ÷5=15 Χ 0.25χ=0.375 3(χ+2)=4×(χ+1) 5χ-7.5×3=50 1260÷84+14χ=295 χ÷0.2=0.625 6χ+9χ=45 Χ+2χ=12.6 5.2+0.4χ=7.6 0.4χ-2.8=7.6 χ÷(1-0.24)=1.15 0.375χ+0.25χ=105 0.5χ+15=40 χ-0.2 5χ=18 χ+0.3 χ=130 12+χ=25 4χ-1.6χ=36 Χ-0.6 χ=3×3 χ÷4 8=1 8×(χ-1.5) χ+0.6 =4.8 0.5χ=6.3 0.375-5χ=0.125 7.2χ-2χ=6.5 6.4-0.32χ=0 6.2χ-3χ=6.4 2χ+χ=78 Χ+3χ=180 2χ+20=180 0.6χ-2.4=18 0.8χ+3=4.6 X+125=370 520+X=710 X-4.9=6.4 120-X=25 7.8+X=2.5 X+8.5=12 X+350=600 150+X=725 X-60=950 7.8+X=12.3 0.8+X=7.6 X-3.5=6.4 X+20%X=38 。(10+x)(500-20x)=6000 x/9+x/12)x8=x+200 (x/9+x/12)8=x+200 1:师徒两人同时加工一批零件,完成任务时师傅比徒弟多加工零件30个。已知单独加工这批零件,师傅需要6小时,徒弟需要10小时。这批零件有多少个? 设总量X,师傅一小时完成总量的X/6,徒弟一小时完成总量的X/10,师傅比徒弟每小时多完成1/6-1/10=X/15 两人合作需要1/(1/6+1/10)=15/4小时 则师傅共比徒弟多加工了总量15/4*X/15=X/4 则列方程应为 (x/6-x/10)/(1/6+1/10)=30 x/15/(4/15)=30 x=120 2:南山小学原有篮球和排球共30个,其中篮球与排球的个数比是7:3.后来又买进几个排球,这是拍企鹅的个数占总数的40%。问后来买进几个排球? 原有篮球30*7/(7+3)=21个,原有排球30-21=9个,设应买X个排球 (9+x)/(30+x)=40% 9+x=12+0.4x 0.6x=3 x=5 3:甲、乙两个工程队共100人,如果甲队人数的4/1(四分之一)调入乙队,乙队的人数就比甲队的人多9/2(九分之二),甲队原有多少人? 设甲原有X人,乙原有100-X人, 11/9(x-1/4x)=(100-x+1/4x) 11x/12=100-3x/4 5x/3=100 x=60 4:育英小学四、五、六年级共有学生615名,已知六年级学生人数的2/1(二分之一),等于五年级学生人数的8/2(五分之二),等于四年级人数的7/3(七分之三)。这三个年级各有学生多少人? 设6年级有X人,则5年级有5X/2/2=5/4X人, 四年级有7X/3/2=7/6X人, X+5/4X+7/6X=615 41/12X=615 X=180 5年级有5/4X=225人 四年级有7/6X=210人 5:甲乙两个学校共有学生1245人,如果从甲调20人到乙校后甲校还比乙校多5人,两校原来有多少人? 设甲原有x人,则乙原有1245-x (x-20)-(1245-x+20)=5 解得: x=645 人;则乙原有:1245-x=1245-645=600人。 即甲有645人,乙有600 人。 6:少先队员献爱心,四、五两个年级共捐896元,五年级比六年级少捐82元,六年级比四年级多捐128元。三个年级各捐款多少元? 设五年级捐x元 六年级捐x+82 四年级捐896-x x+82-(896-x)=128 x=471 7:水果市场里,苹果的价格比梨贵0.7元,是梨价格的1.25倍,苹果和梨的价格分别是多少元? 设苹果的价格为x元 x/(x-0.7)=1.25 x=3.5 x-0.7=2.8 8:一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1大瓶比1中瓶加1小瓶贵4角,大中小各买1瓶需9元6角.3种包装的饮料每瓶各多少元? 设小瓶单价x角,中瓶2x-2角,大瓶3x+2角。 x+2x-2+3x+2=96 6x=96 x=16 2x-2=32-2=30 3x+2=48+2=50 9:一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有多少排座位? 设有X排座位,Y名学生。 列出方程组: 12X+11=Y (1) 14X-13=Y (2) (2)-(1)得:2X=24 X=12所以Y=12X12+11=155 (这是没排座位都有人做的情况。) 10:轿车每小时行70千米,面包车每小时行60千米,两车在相距185.2千米的两地同向行驶,轿车在前,面包车在后.面包车出发2.5小时后,轿车才出发.轿车行驶了3.7小时后,两车相距多少千米? 面包车行2.5+3.7小时 所以行(2.5+3.7)*60千米 轿车行3.7小时,行了3.7*70千米 轿车在前185.2千米 设两车相距x千米 则3.7*70+185.2=x+(2.5+3.7)*60 444.5=x+372 x=444.5-372=72.5 所以相距72.5千米 11:同学们在军训时,以每小时6千米的速度从营地出发去某地训练.行了16千米后,通讯员骑自行车以每小时14千米的速度去追赶他们,几小时后可以追上?追上时离营地多少千米? 设x小时追上 则这x小时同学行6x千米,通讯员14x千米 通讯员多行16千米 所以14x=16+6x 14x-6x=16 8x=16 x=2 所以2小时追上 通讯员行了14x=28千米 所以追上时离营地28千米 12:两个城市之间的铁路路程是1500千米,两列火车从两城出发,相向而行,慢车平均每小时行82千米,快车平均每小时行106千米,快车现行90千米后,慢车再出发,慢车开出几小时后与快车在途中相遇? 设x小时相遇 106x+90+82x=1500 解得x=7.5
记得采纳啊
『贰』 小学6年级数学计算题200道
分析:鸡×1/4=鸭×1/8,得:鸡=鸭×1/2,即鸡是鸭的1/2
鸭:400÷(1+1/2)=
数据确实有问题。
『叁』 小学六年级数学分数计算题140道
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
1.口算下面各题
(1)58+42= (2)87-45= (3)125×8=
(4)50×12= (5)804÷4= (6)134+66=
(7)1000-98= (8)720÷5= (9)0÷47=
2.先填写下面各题的运算顺序,再计算出得数。
(1)168+36-36+32=
(2)153-5×14+83=
(3)50×5÷50×5=
3.判断:对的打“√”,错的打“×”
(1)13×15与15×13表示的意义相同。( )
(2)3000÷425÷8的计算结果一定小于3000÷(425×8)的计算结果。( )
(3)两个因数的积是800,如果一个因数不变,另一个因数缩小20倍,那么积是40。( )
(4)算式:“750÷25+35×2”所表示的意义是750除以25的商;加上35的2倍,和是多少?( )
(5)24×25=6×4×25=6+100=106( )
4.用简便方法计算:
(1)3786-499
(2)32×25×125
(3)-338-662
(4)7987+350+2013+450
(5)38×38+62×38
(6)452+99×452
(7)201×79
(8)50×125×4×8
5.计算下面各题:
(1)340×(120-40÷8)
(2)45×(720-1957÷19)
(3)86+[4500+(2088÷36)÷2]
(4)396×[74-(4875÷15-13×21)]
(5)[1054-(174-168)]÷8
(6)6048÷[(107-99)×9]
『肆』 六年级数学,10道简便计算题带答案谢谢哦∩_∩
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
『伍』 小学六年级数学分数计算题500道
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
『陆』 小学六年级数学计算题大全(附答案)
六年级数学应用题1
一、分数的应用题
1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?
2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?
3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?
4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?
5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?
6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?
7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?
8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?
六年级数学应用题2
二、比的应用题
1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?
4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?
7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?
8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?
六年级数学应用题3
三、百分数的应用题
1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?
2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?
3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?
4、教育储蓄所得的利息不用纳税。爸爸为笑笑存了三年期的教育储蓄基金,年利率为5.40%,到期后共领到了本金和利息22646元。爸爸为笑笑存的教育储蓄基金的本金是多少?
5、服装店同时买出了两件衣服,每件衣服各得120元,但其中一件赚20%,另一件陪了20%,问服装店卖出的两件衣服是赚钱了还是亏本了?
6、爸爸今年43岁,女儿今年11岁,几年前女儿年龄是爸爸的20%?
6、比5分之2吨少20%是( )吨,( )吨的30%是60吨。
7、一本200页的书,读了20%,还剩下( )页没读。甲数的40%与乙数的50%相等,甲数是120,乙数是( )。
8、某工厂四月份下半月用水5400吨,比上半月节约20%,上半月用水多少吨?
9、 张平有500元钱,打算存入银行两年.可以有两种储蓄办法,一种是存两年期的,年利率是2.43%;一种是先存一年期的,年利率是2.25%,第一年到期时再把本金和税后利息取出来合在一起,再存入一年.选择哪种办法得到的税后利息多一些?
10、 小丽的妈妈在银行里存入人民币5000元,存期一年,年利率2.25%,取款时由银行代扣代收20%的利息税,到期时,所交的利息税为多少元?
11、 一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨。
六年级数学应用题4
四、圆的应用题
1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。
2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?
3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。
4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。
5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?
6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?
7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?
8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?
9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?
六年级数学应用题5
1、救生员和游客一共有56人,每个橡皮艇上有上名救生员和7名游客。一共有多少名游客?多少名救生员?
2、王伯伯家里的菜地一共有800平方米,准备用 种西红柿。剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?
3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?
4、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3︰4︰5。这个三角形三条边各是多少厘米?
5、一个三角形的三个内角度数的比是1︰2︰3,这个三角形中最大的角是多少度?这个三角形是什么三角形?
6、修路队要修一条长432米的公路,已经修好了全长的 ,剩余的任务按5︰4分给甲、乙两个修路队。两个修路队各要修多少米?
7、在"学雷锋"活动中,五年级和六年级同学平均做好事80件,其中五、六年级做好事件数的比是3︰5。五、六年级同学各做好事多少件?
8、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,已知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?
9、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?
10、一个底面是圆形的锅炉,底面圆的周长是1.57米.底面积是多少平方米?(得数保留两位小数)
11、小东有一辆自行车,车轮的直径大约是66厘米,如果平均每分钟转100周,从家到学校的路程是4144.8米,大约需要多少分钟?
12、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?
13、一个圆形牛栏的半径是15厘米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计。)如果每隔2米装一根木桩,大约要装多少根木桩?
14、公园草地上一个自动旋转喷灌装置的射程是10米,它能喷灌多大的范围?
15、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
16、街心花园修建一个圆形花坛,周长是31.4米,在花坛的周围修建一条宽是1米的环形小路。这条小路的面积多少?
17、小明购买了5角和8角的邮票共16张,共用去10.7元。小明买这两种邮票各多少张?
18、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?
19、甲、乙两队开挖一条水渠。甲队单独挖要8天完成,乙队单独挖要12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了多少天?
20、有一个两位数,它的各位数字的和是7,若从这个数减去27,所得的数恰好是这个数各位数字的次序倒转。求这个数。
六年级数学应用题6
1、一根绳长4/5米,先用去1/4,又用去1/4米,一共用去多少米?
2、山羊50只,绵羊比山羊的 4/5多3只,绵羊有多少只?
3、看一本120页的书,已看全书的 1/3,再看多少页正好是全书的 5/6?
4、一瓶油4/5千克,已用去3/10千克,再用去多少千克正好是这桶油的 1/2?
5、一袋大米120千克,第一天吃去1/4,第二天吃去余下的 1/3,第二天吃去多少千克?
6、一批货物,汽车每次可运走它的 1/8,4次可运走它的几分之几?如果这批货物重116吨,已经运走了多少吨?
7、某厂九月份用水28吨,十月份计划比九月份节约 1/7,十月份计划比九月份节约多少吨?
8、一块平行四边形地底边长24米,高是底的 3/4,它的面积是多少平方米?
9、人体的血液占体重的 1/13,血液里约 2/3是水,爸爸的体重是78千克,他的血液大约含水多少千克?
10、六年级学生参加植树劳动,男生植了160棵,女生植的比男生的 3/4多5棵。女生植树多少棵?
11、新光小学四年级人数是五年级的 4/5,三年级人数是四年级的 2/3,如果五年级是120人,那么三年级是多少人?
12、甲、乙两车同时从相距420千米的A、B两地相对开出,5小时后甲车行了全程的 3/4,乙车行了全程的 2/3,这时两车相距多少千米?
13、五年级植树120棵,六年级植树的棵数是五年级的7/5,五、六年级一共植树多少棵?
14、修一条12/5千米的路,第一周修了2/3千米,第二周修了全长的1/3 ,两周共修了多少千米?
15、一条公路长7/8千米,第一天修了1/8千米,再修多少千米就正好是 1/2全长的 ?
16、小华看一本96页的故事书,第一天看了 1/4,第二天看了 1/8。两天共看了多少页?
17、一本书有150页,小王第一天看了总数的1/10,第二天看了总数的 1/15,第三天应从第几页看起?
18、学校运来2/5 吨水泥,运来的黄沙是水泥的5/8 还多 1/8吨,运来黄沙多少吨?
19、小伟和小英给希望工程捐款钱数的比是2 :5。小英捐了35元,小伟捐了多少元?
20、电视机厂今年计划比去年增产2/5。去年生产电视机1/5万台,今年计划增产多少万台?
六年级数学应用题7
1、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖完这条水渠的2/3?
2、某校少先队员采集树种,四年级采集了1/2千克,五年级比四年级多采集1/3千克,六年级采集的是五年级的6/5。六年级采集树种多少千克?
3、仓库运来大米240吨,运来的大豆是大米吨数的5/6,大豆的吨数又是面粉的3/4。运来面粉多少吨?
4、甲筐苹果9/10千克,把甲的1/9给乙筐,甲乙相等,求乙筐苹果多少千克?
5、一桶油倒出2/3,刚好倒出36千克,这桶油原来有多少千克?
6、甲、乙两个工程队共修路360米,甲乙两队长度比是5 : 4,甲队比乙队多修了多少米?
7、服装厂第一车间有工人150人,第二车间的工人数是第一车间的2/5,两个车间的人数正好是全厂工人总数的5/6,全厂有工人多少人?
8、一批水果120吨,其中梨占总数的2/5,又是苹果的4/5,苹果有多少千克?
9、甲乙两数的和是120,把甲的1/3给乙,甲、乙的比是2:3,求原来的甲是多少?
10、小红采集标本24件,送给小芳4件后,小红恰好是小芳的4/5,小芳原有多少件?
11、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?
12、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?
13、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?
14、王华以每小时4千米的速度从家去学校,1/6小时行了全程的2/3,王华家离学校有多少千米?
15、3台织布机3/2小时织布72米,平均每台织布机每小时织布多少米?
16、一辆汽车行9/2千米用汽油9/25升,用3/5升汽油可以行多少米?
17、有一块三角形的铁皮,面积是3/5平方米。它的底是3/2米,高是多少米?
18、水果店运来梨和苹果共50筐,其中梨的筐数是苹果的2/3,运来梨和苹果各多少筐?
19、用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形的面积是多少平方厘米?斜边上的高是多少厘米?
20、一个长方形的周长是49米,长和宽的比是4∶3,这个长方形的面积是多少平方米?
六年级数学应用题8
1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?
2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?
3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?
4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?
5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?
6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?
7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?
8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?
9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?
10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?
11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?
12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?
13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?
14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?
15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?
16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?
17、牧场养牛480头,比去年养的多1/5,比去年多多少头?
18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?
19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?
20、一项工程,甲独做18天完成,乙独做15天完成,甲、乙两人合做,但甲中途有事请假4天,那么甲完成任务时实际做了多少天?
六年级数学应用题9
1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?
2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?
3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?
4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?
5、一种电脑原价6800元,现降价1700元,降价百分之几?
6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?
7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?
8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?
9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?
10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?
11、买来足球55个,买来的篮球比足球少20%,买来篮球多少个?
12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?
13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?
14、在100克水中,加入25克盐。这盐水的含盐率是多少?
15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。
16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。
17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?
18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?
19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?
20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?
六年级数学应用题10
1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?
2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?
3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?
4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?
5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?
6、保险公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?
7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?
8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的?
9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?
0、玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%。如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元?
11、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?
12、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?
13一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?
14、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?
15、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?
16、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?
17、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?
18、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?
19、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?
20、汽车的速度是火车速度的4/7。两车同时从两地相向而行,在离中点15千米处相遇,这时火车行了多少千米?
一、用简便方法计算下列各题。
1.437+998
2.372-199
3.0.125×3.7×8
4. 2.5×13×40
5. 0.25×(0.4+4)
6. 5-59 -49
7. 87 ×36×78
8. 28×23 +2×23
9. (15+52 )×52
10. 57 +56 +27 +16
11. 25 ×99+25
12. (35 -12 )×53
13. 25 ÷3+35 ×13
14. 13 ÷49 +13 +14
15. 3-35 ×521 -67
16. 29 +12 ÷45 +38
二、计算下面各题。
1.25 +27 ÷37
2. 8×3.4+3.6÷0.6
3. 2-815 ×916
4. 0.3×7.5-0.375×2
5. 25 ×43 +15 ÷34
6. 34 ÷(1-12 -14 )
7. (12 -38 )÷34
8. 10÷59 +19 ×6
9. 79 ÷135 +29 ×513
10. (12 +17 -712 )÷17
11. 3÷0.01+40×0.5
12. (14 +45 )÷73 +710
1.78 ×34 +14 ×78
2.23 +13 ÷23
3. 20-18 ×45
4. 2.2×3.7+6.3×2.2
5. (45 -23 )×154
6. 114 ×(14 +112 )
7. [1-(38 +14 )]÷14
8. 65 ×(23 +32 )÷85
9. 67 ÷[(47 -12 )×25 ]
10. [1-(13 +115 )]÷45
二、文字题。(用综合算式解答)
1. 12 减去18 的差乘35 ,积是多少?
2.1减去4的16 ,所得的差再除35 ,商是多少?
3.0.8乘1.25的积,加上21除以4.2的商,得多少?
4. 45 乘4的倒数,所得的积比12 少多少?
5.25 加上8个15 的和,被13 除,商是多少?
6.910 减去13 除320 的商,所得的差与59 相乘,结果是多少?