Ⅰ 有关圆的知识点总结
1、圆是定点的距离等于定长的点的集合
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
2、定理 不在同一直线上的三点确定一个圆。
3、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
4、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
5、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
6、定理 一条弧所对的圆周角等于它所对的圆心角的一半
推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
8、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
9、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
切线的性质定理 圆的切线垂直于经过切点的半径
推论1 经过圆心且垂直于切线的直线必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
10、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
圆的外切四边形的两组对边的和相等
11、①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
12、定理 相交两圆的连心线垂直平分两圆的公共弦
13、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
14、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
144弧长计算公式:L=nπR/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
Ⅱ 圆的所有知识点
圆是指在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线,标准方程是(x-a)²+(y-b)²=r²,其中点(a,b)是圆心,r是半径。 圆是一种几何图形,也是一种轴对称、中心对称图形。同时,圆又是“正无限多边形”,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。由于“无限”是一个概念,所以世界上没有真正的圆,只有一种概念性的图形。
径
1.连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
2.通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。
圆的直径 d=2r
弦
1.连接圆上任意两点的线段叫做弦(chord).在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
弧
1.圆上任意两点间的部分叫做圆弧,简称弧(arc)以“⌒”表示。
2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
3.在同圆或等圆中,能够互相重合的两条弧叫做等弧。
角
1.顶点在圆心上的角叫做圆心角(central angle)。
2. 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
圆周率
圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母表示,
≈3.1415926535......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。
Ⅲ 怎样整理6年级圆的知识点
圆形:(圆周率:π,通常取3.14)周长=直径×圆周率 面积=半径的平方×圆周率 圆的整理和复习回知识点梳理:⑴答什么叫做圆的半径、直径?半径和直径的关系? ⑵什么叫做圆的周长?用公式怎么表示?⑶什么叫做圆周率?用字母怎样表示?⑷圆的周长总是直径的多少倍?⑸什么叫做圆的面积?圆的面积公式是怎样推导出来的?怎样表示?⑹什么叫轴对称图形?什么叫对称轴?⑺在我们所学的平面图形当中,哪些是轴对称图形?各有几条对称轴?⑻如何画圆?什么决定圆的位置?什么决定圆的大小?⑼圆环的面积怎样求? 如何梳理圆的知识?第一,选择一条主线梳理圆的有关知识,如点与圆的位置,直线与圆的位置关系,圆圆的位置关系第二,用图形表示他们之间的关系第三,用数学符号表示这些关系第四,解决这部分内容得方法是什么?
Ⅳ 小学六年级上册数学圆的知识点
圆的认识,圆的周长,圆,圆环,扇形的面积,
Ⅳ 圆的知识点总结
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径回的点的集合
3、圆的外部可答以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等
5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
7、到已知角的两边距离相等的点的轨迹,是这个角的平分线
8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
9、定理不在同一直线上的三点确定一个圆。
10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
Ⅵ 关于圆的知识点(小学六年级)
圆的特征:圆是抄由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小
圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴
同一圆中直径是半径的2倍
圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14
圆的周长:C=2πr或C=πd
面积计算公式:πr²
Ⅶ 圆的认识知识点。
1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的回圆心答。图形一周的长度,就是圆的周长。
2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。
3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。
4 连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。
5 圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。
6 由两条半径和一段弧围成的图形叫做扇形。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角。
9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。
11圆周角等于相同弧所对的圆心角的一半。
12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。