Ⅰ 小学生奥数知识点总结
(实在没有找到例题,不好意思。但我看了很多的知识点,这是比较好的一个)
小学奥数理论知识总结
1、和差倍问题
2、年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
3、归一问题的基本特点
问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
4、植树问题
5、鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
6、盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量、
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量、
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量。
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
8、周期循环与数表规律
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平 年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9、平均数
基本公式:①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算.
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
10、抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
Ⅱ 小学奥数知识点是36个还是30个
又不是正规教育,哪有什么“知识点”。知识点体系都是根据教学大内纲来的,小学的所谓“容奥数”根本就没有真实的国际竞赛(这东西也没必要,估计永远不会出现),有的只是最多到全国级别的数学竞赛,然后根据竞赛来制定的考点。这种所谓知识点针对性很强,看是针对什么级别的什么竞赛的就了解了。36个也好,30个也好,数字没太大意义,毕竟又不是高考那么严谨的要求基本上面面俱到,会考到哪些没人知道。所有的小学数学竞赛通通是非官方的,虽然有的竞赛认知性很强。
Ⅲ 小学奥数常考的十大类型题,包括公式
小学奥数常考的知识板块有这几类:计算、计数、数论、几何、应用、行程、分数、杂题。
计算:考察的是计算规律与计算方法的运用,乘法的分配律是考的比较多的,注意观察算式中相同或者相关的数,常用的方法有:凑整、分组、约分、裂项、换元等,较难的还有繁分数等。
计数:这个版块一般和其他的知识点结合考察,如图形的计数,和数论的结合也比较多,重要的思想就是分类,注意不重复,不遗漏。
数论:数论是小学奥数的重点和难点,考察了我们对因数与倍数、计数与偶数、质数与合数、分解质因数、最大公因数与最小公倍数、有余数的除法、同余等知识点,这个知识点中需要记忆的东西比较多,需要同学下工夫。
几何:平面图形与立体图形。
平面图形:直线型与曲线形图形的周长与面积,奥数中考的最多的是图形的面积。一般是组合图形的面积或不规则图形的面积,常用的思想:相加减、割补法、旋转、等积变形。
立体图形:考察的是立体图形的体积与表面积、立体图形的切割、立体图形的染色计数等。
应用:应用题中的知识点比较多,考的较多的是:和差、和倍、差倍、年龄、盈亏、平均数、鸡兔同笼、牛吃草、工程、行程等,总之应用题需要同学努力去一个个攻克。
行程:虽然行程是应用题的一种,但是因为其重要性,我们单独把它当做一个大类。
行程基本类型:相遇与追及。
特殊类型:流水行船、火车过桥、环形跑道、多次相遇等。
做好行程图是解决行程问题的关键,注意抓住变化过程中的不变量,我们到了6年级通常引入比例的思想来解行程问题。有时候我们也会用盈亏问题的思想和牛吃草问题的思想来帮助我们解决行程问题。
分数:这个在奥数中所占的分数比重非常大。分数的计算和应用题都是奥数中的重要考点。
分数应用题中注意:①找不变量 ②把不变量看作单位1 ③找已知量对应的分率
一定要注意统一单位1。
分数应用题与百分数应用题重要知识点:工程问题、利润问题、浓度问题。
杂题:比较重要的杂题有:抽屉原理、最值问题、容斥原理、统筹、最优方案等。
小学奥数要注意及时的归纳与总结,比如说思考方法与解题方法:假设法、还原法、比较法、作图法,一个知识点学习了,一般的等量关系是什么,常用的方法是什么,怎么样找题目的突破口等。 有问题欢迎和我联系,都是手打,望采纳!
Ⅳ 小学奥数知识点(1-6年级)
可能有点多,不过希望可帮助你
概述
一、 计算
1. 四则混合运算繁分数
⑴ 运算顺序
⑵ 分数、小数混合运算技巧
一般而言:
① 加减运算中,能化成有限小数的统一以小数形式;
② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化
⑷繁分数的化简
2. 简便计算
⑴凑整思想
⑵基准数思想
⑶裂项与拆分
⑷提取公因数
⑸商不变性质
⑹改变运算顺序
① 运算定律的综合运用
② 连减的性质
③ 连除的性质
④ 同级运算移项的性质
⑤ 增减括号的性质
⑥ 变式提取公因数
形如:
3. 估算
求某式的整数部分:扩缩法
4. 比较大小
① 通分
a. 通分母
b. 通分子
② 跟“中介”比
③ 利用倒数性质
若 ,则c>b>a.。形如: ,则 。
5. 定义新运算
6. 特殊数列求和
运用相关公式:
①
②
③
④
⑤
⑥
⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 数论
1. 奇偶性问题
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原则
形如: =100a+10b+c
3. 数的整除特征:
整除数 特 征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n= p1 × p2 ×...×pk
7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同余定理
① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质
①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:把数字分解,使他满足积是平方数。
④平方和。
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计
三、 几何图形
1. 平面图形
⑴多边形的内角和
N边形的内角和=(N-2)×180°
⑵等积变形(位移、割补)
① 三角形内等底等高的三角形
② 平行线内等底等高的三角形
③ 公共部分的传递性
④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性质(份数、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不变原理
知5-2=3,则圆点比方点多3。
⑺隐含条件的等价代换
例如弦图中长短边长的关系。
⑻组合图形的思考方法
① 化整为零
② 先补后去
③ 正反结合
2. 立体图形
⑴规则立体图形的表面积和体积公式
⑵不规则立体图形的表面积
整体观照法
⑶体积的等积变形
①水中浸放物体:V升水=V物
②测啤酒瓶容积:V=V空气+V水
⑷三视图与展开图
最短线路与展开图形状问题
⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
四、 典型应用题
1. 植树问题
①开放型与封闭型
②间隔与株数的关系
2. 方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3. 列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题
车长=速度和×相遇时间
车长=速度差×追及时间
4. 年龄问题
差不变原理
5. 鸡兔同笼
假设法的解题思想
6. 牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7. 平均数问题
8. 盈亏问题
分析差量关系
9. 和差问题
10. 和倍问题
11. 差倍问题
12. 逆推问题
还原法,从结果入手
13. 代换问题
列表消元法
等价条件代换
五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1
环型路程: 甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5. 环形跑道
6. 行程问题中正反比例关系的应用
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7. 钟面上的追及问题。
① 时针和分针成直线;
② 时针和分针成直角。
8. 结合分数、工程、和差问题的一些类型。
9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、 计数问题
1. 加法原理:分类枚举
2. 乘法原理:排列组合
3. 容斥原理:
① 总数量=A+B+C-(AB+AC+BC)+ABC
② 常用:总数量=A+B-AB
4. 抽屉原理:
至多至少问题
5. 握手问题
在图形计数中应用广泛
① 角、线段、三角形,
② 长方形、梯形、平行四边形
③ 正方形
七、 分数问题
1. 量率对应
2. 以不变量为“1”
3. 利润问题
4. 浓度问题
倒三角原理
例:
5. 工程问题
① 合作问题
② 水池进出水问题
6. 按比例分配
八、 方程解题
1. 等量关系
① 相关联量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恒等变形
2. 二元一次方程组的求解
代入法、消元法
3. 不定方程的分析求解
以系数大者为试值角度
4. 不等方程的分析求解
九、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 an=a1+(n-1)d
求项数: n=
求和: S=
② 等比数列
求和: S=
③ 裴波那契数列
⑶策略问题
① 抢报30
② 放硬币
⑷最值问题
① 最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
② 最优化问题
a.统筹方法
b.烙饼问题
十、 算式谜
1. 填充型
2. 替代型
3. 填运算符号
4. 横式变竖式
5. 结合数论知识点
十一、 数阵问题
1. 相等和值问题
2. 数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3. 幻方
⑴奇阶幻方问题:
杨辉法 罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法
十二、 二进制
1. 二进制计数法
① 二进制位值原则
② 二进制数与十进制数的互相转化
③ 二进制的运算
2. 其它进制(十六进制)
十三、 一笔画
1. 一笔画定理:
⑴一笔画图形中只能有0个或两个奇点;
⑵两个奇点进必须从一个奇点进,另一个奇点出;
2. 哈密尔顿圈与哈密尔顿链
3. 多笔画定理
笔画数=
十四、 逻辑推理
1. 等价条件的转换
2. 列表法
3. 对阵图
竞赛问题,涉及体育比赛常识
十五、 火柴棒问题
1. 移动火柴棒改变图形个数
2. 移动火柴棒改变算式,使之成立
十六、 智力问题
1. 突破思维定势
2. 某些特殊情境问题
十七、 解题方法
(结合杂题的处理)
1. 代换法
2. 消元法
3. 倒推法
4. 假设法
5. 反证法
6. 极值法
7. 设数法
8. 整体法
9. 画图法
10. 列表法
11. 排除法
12. 染色法
13. 构造法
14. 配对法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
Ⅳ 小学奥数知识点是30个还是36个
小学奥数30个知识点大汇总
1.和差倍问题
和差问题和倍问题差倍问题
已知条件几个数的和与差几个数的和与倍数几个数的差与倍数
公式适用范围已知两个数的和,差,倍数关系
公式①(和-差)÷2=较小数
较小数+差=较大数小学奥数很简单,就这30个知识点
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数
小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题求出同一条件下的
和与差和与倍数差与倍数
2.年龄问题的三个基本特征:
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
4.植树问题
基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树
基本公式棵数=段数+1
棵距×段数=总长棵数=段数-1
棵距×段数=总长棵数=段数
棵距×段数=总长
关键问题确定所属类型,从而确定棵数与段数的关系
5.鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。
Ⅵ 小学奥数有哪些知识点
16.约数与倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、 几个数都除以它们的最大公约数,所得的几个商是互质数。
2、 几个数的最大公约数都是这几个数的约数。
3、 几个数的公约数,都是这几个数的最大公约数的约数。
4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;
18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;
18的倍数有:18、36、54、72……;
那么12和18的公倍数有:36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法
17.数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
18.余数及其应用
基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0< p>
余数的性质:
①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。
19.余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
20.分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
分数单位:把单位“1”平均分成几份,表示这样一份的数。
百分数:表示一个数是另一个数百分之几的数。
常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。
②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。
③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。
④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。
⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。
⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。
⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。
⑧浓度配比法:一般应用于总量和分量都发生变化的状况。
21.分数大小的比较
基本方法:
①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。
②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。
③基准数法:确定一个标准,使所有的分数都和它进行比较。
④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。
⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律)
⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。
⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。
⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。
⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。
⑩基准数比较法:确定一个基准数,每一个数与基准数比较。
22.分数拆分
一、 将一个分数单位分解成两个分数之和的公式:
① =+;
②=+(d为自然数);
23.完全平方数
完全平方数特征:
1. 末位数字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
4. 约数个数为奇数;反之成立。
5. 奇数的平方的十位数字为偶数;反之不成立。
6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7. 两个相临整数的平方之间不可能再有平方数。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。
比值:比的前项除以后项的商,叫做比值。
比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。
比例:表示两个比相等的式子叫做比例。a:b=c:d或
比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。
正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:图上距离与实际距离的比叫做比例尺。
按比例分配:把几个数按一定比例分成几份,叫按比例分配。
25.综合行程
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追及问题:追及时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
主要方法:画线段图法
基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
26.工程问题
基本公式:
①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
基本思路:
①假设工作总量为“1”(和总工作量无关);
②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.
关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
经验简评:合久必分,分久必合。
27.逻辑推理
基本方法简介:
①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。
④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。
⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
28.几何面积
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法:
1. 连辅助线方法
2. 利用等底等高的两个三角形面积相等。
3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4. 利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)
②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
29.立体图形
名称 图形 特征 表面积 体积
长
方
体 8个顶点;6个面;相对的面相等;12条棱;相对的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正
方
体 8个顶点;6个面;所有面相等;12条棱;所有棱相等; S=6a2 V=a3
圆
柱
体 上下两底是平行且相等的圆;侧面展开后是长方形; S=S侧+2S底
S侧=Ch V=Sh
圆
锥
体 下底是圆;只有一个顶点;l:母线,顶点到底圆周上任意一点的距离; S=S侧+S底
S侧=rl V=Sh
球
体 圆心到圆周上任意一点的距离是球的半径。 S=4r2 V=r3
30.时钟问题—快慢表问题
基本思路:
1、 按照行程问题中的思维方法解题;
2、 不同的表当成速度不同的运动物体;
3、 路程的单位是分格(表一周为60分格);
4、 时间是标准表所经过的时间;
合理利用行程问题中的比例关系;