❶ 小学数学数与代数部分解决问题内容有哪些
(一)数的认识
1整数【正数、0、负数】
一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
2小数【有限小数、无限小数】
一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
3分数【真分数、假分数】
一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。即:a÷b=a/b(b≠0)
三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。真分数小于1。
六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
❷ 小学数学数与代数里重要的基础知识有哪些
填空1、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作(),读作(),改写成以万作单位的数(),省略万后面的尾数是()万。
❸ 小学所有数学代数公式
书店有类似的工具书卖,像字典一样的,即查即有,楼主可以去买本,放在手边翻翻,好过任何人在这里回答
❹ 请问人教版小学数学每一年级“数与代数”都有哪些内容呢
人教版小学数学“数与代数”
一上
数一数;
比一比;
1~5的认识;
6~10的认识;
11~20各数的认识
1~5的加减法;
6~10的加减法;
20以内进位加法;
20以内连加、连减、加减混合
认识钟表(整时、半时)
按规律填数
一下
100以内数的认识
20以内退位减法;
100以内加法和减法(整十数加减整十数)
认识人民币(元、角、分之间关系);
认识钟表(几时几分)
找规律(图形与数字中的简单规律)
二上
100以内的加法和减法(两位数加两位数;两位数减两位数;连加、连减和加减混和;加减法估算);
表内乘法(乘法的初步认识、2-6的乘法口诀);
表内乘法(7、8、9的乘法法口)
长度单位(厘米、米)
简单地排列与组合
二下
万以内数的认识
解决问题(有小括号的两步加减、乘加乘减);
表内除法(除法的初步认识、用2-6的乘法口诀求商);
表内除法(用7、8、9的乘法口诀求商);
万以内的加法和减法(一)
重量单位(克与千克);
有多重
找规律(探索图形与数的稍复杂排列规律)
三上
分数的初步认识
万以内的加法和减法(验算);
有余数的除法(除法竖式格式);
多位数乘一位数;
分数的简单计算
测量单位(毫米、分米、千米、吨);
时、分、秒;
稍复杂的排列与组合问题(搭配问题)
三下
小数的初步认识
除数是一位数的除法;
两位数乘一位数;
简单的小数加减法;
解决问题(××、 ÷÷、×÷、×+、×-、÷+、÷-);
年、月、日;
24时记时法;
制作年历;
集合、等量代换
四上
大数的认识(亿以内数的认识;亿以上数的认识;1亿有多大)
三位数乘两位数(出现积的变化规律;估算);
除数是两位数的除法
速度、时间、路程
烙饼问题
沏茶问题
卸货
田忌赛马(统筹、优化思想)
四下
小数的意义和性质
四则运算;
运算定律与简便计算;
小数的加法和减法
植树问题(间隔数、点数关系、方阵)
五上
循环小数
小数乘法(小数乘整数、小数乘小数、积的近似数、连乘、乘加、乘减、整数乘法运算定律推广到小数);
小数除法(小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律、解决问题)
简易方程(用字母表示数、解简易方程)
探索给定事物中隐含的规律与变化趋势;
数字编码
五下
分数的意义、性质;因数与倍数
分数的加法和减法(同分母分数加减法、异分母分数加减法、分数加减混合运算)
找次品(优化思想)
六上
倒数的认识;
比的意义和基本性质;
百分数的认识;
分数乘法;
分数除法;
比和比的应用;
用百分数解决问题;
折扣;
税率、利率、利息、本金、时间
鸡兔同笼
六下
负数的认识;
比例的意义和基本性质
解比例、正比例、反比例
正反比例列方程来解决问题、
图上距离、实际距离、比例尺
抽屉原理
❺ 求小学456年级的重点知识(数学) 一、数与代数 1、自然数(概念,最大的,最小的) 2、整数 3、分数
4年级:1、0.4=( )/( )=10/( )=( )/35 =( )%
2、13628中的“6”表示( );70.6中的“6”表示( );6/11 中的“6”表示( )。
3、280004320读作( ),四舍五入改写成用“万”作单位的数是( ),省略亿位后的尾数得到的近似数是( )。
4、某班5名同学的体重分别是:小军23kg,小强21kg,小兵25kg,小丽24kg,小红22kg。如果把他们的平均体重记为0,那么这5名同学的体重分别记为:小军 ,小强 ,小兵 ,小丽 ,小红 。
5、一个数由3个一,5个百分之一和7个千分之一组成,这个数写作( ),读作( ),把这个数精确到十分位是( )。
6、18和36的最大公因数是( );12和42的最小公倍数是( )。
7、能被2、3、5整除的最大两位数是( );比最大的三位数多1的数是( )。
8、a的5倍与b的差是( ),比x少 1/5 的数是( )。
9、1.8公顷=( )平方米 5米60厘米=( )米
2.4时=( )时( )分 7200立方米=( )立方分米
10、在( )里填上合适的单位名称。
一颗梨重150( ) 一张床长2( )
冰箱的容积是216( ) 明明早上7( )起床
11、甲数是乙数的3倍,乙数和甲数的比是( )。甲数占乙数的( )/( ) 。
12、找规律填空。
⑴ 1/2 ,3/4 ,5/8 ,7/16 ,( ),( ),
⑵ 1 ,4 ,9 ,16 ,25 ,( ) ,( ), 64 ,81
二、判断对错。
( )1、所有的偶数都是合数。
( )2、长方形的面积一定,长和宽成反比例。
( )3、2008年的上半年有181天。
( )4、3/10 里面有3个0.1。
( )5、把60缩小到它的 1/100 是0.06。
( )6、把一根3米长的绳子平均分成5份,每份是全长的 1/5 。
( )7、6人见面,每两人握一次手,一共要握12次。
三、解决问题。
1、清风书社去年全年接待读者120万人。上半年接待读者的人数是全年的 3/8 ,第四季度接待读者的人数是上半年的 2/5 ,第四季度接待读者多少人?
2、王阿姨买了50000元定期五年的国家建设债券,年利率为3.14%,到期时,她想用利息买一台7500元的笔记本电脑,够吗?
❻ 如何在小学数学教学中渗透代数思维方式
在知识的呈现过程中,适时渗透数学思想方法 。
对于数学而言,知识的发生过程,实际上也就是思想方法的发生过程。因此,象概念的形成过程、结论的推导过程、方法的思考过程、问题的发现过程、规律的被揭示过程等等,都蕴含着向学生渗透数学思想方法、训练思维的极好机会。对于学生来说,最常见的困难之源是:一项工作、一个发现、一个规律、……很少以创始人当初所用的形式出现,它们已经被浓缩了,隐去了曲折、复杂的思维过程,呈现出整理加工的严密、抽象、精炼的结论,而导致其诞生的那些思想方法却往往隐为内在形式,成为数学结构系统的具有潜在价值的“内河流”。我们教学工作的一项重要任务,就是揭开数学这种严谨、抽象的面纱,将发现过程中的活生生的教学“反朴归真”地交给学生,让学生亲自参与“知识再发现”的过程,经历探索过程的磨砺,汲取更多的思维营养。例如,在教学圆的面积时,先引导学生回忆以往在推导平行四边形、三角形、梯形等图形面积计算时的方法,再把圆转化成长方形,进而推导出圆的面积计算公式。我们从方法人手,将待解决的问题,通过某种途径进行转化,归纳成已解决或易解决的问题,最终使原问题得到解决。这样的教学活动让学生经历了知识的形成过程,渗透了化归、极限的数学思想,为后继学习起到了非常重要的作用。
2.在解题思路的探索中,恰当渗透数学思想方法。
课堂教学中,学生是学习的主人。在学习过程中,要引导学生积极主动地参与,亲自去发现问题、解决问题、掌握方法,其实,对于数学思想方法的学习也不例外,在数学教学中,解题思路的探索过程是最基本的活动形式之一,数学问题的解答过程是对数学思想方法亲身体验和获得的过程,也是通过运用对其加深认识和理解的过程。例如,在解决“鸡兔同笼”问题时,学生初读题目,有些无从下手。这时就需要教师引导学生用容易探究的小数量代替《孙子算经》原题中的大数量让学生探究整理,渗透了转化的思想方法;用列表法解决问题,渗透了函数的思想方法;用算术法解决问题,渗透了假设的思想方法;用方程法解决问题,渗透了代数的思想方法;在梳理方法时,利用课件出示简笔画,帮助学生理解各种算法等,渗透了数形结合的思想方法,这样将数学思想方法的渗透和知识教学紧密地结合,帮助学生掌握正确的解题方法,提高发散思维能力。
3.在实际问题的解决中,灵活渗透数学思想方法
解题是数学的心脏,学生不仅通过解题掌握和巩固数学基础知识,而且由于数学解题重在解题的整个过程,所以还能培养和发展学生的数学能力,而教师应对学生的解题活动加以指导,不能为了解题而解题,而忽视对思维过程的展示,要在解题过程中揭示后续解题活动中解决类似问题的通用思想方法。因此,加强数学应用意识,鼓励学生运用数学思想方法去分析解决生活实际问题,引导学生抽象、概括、建立数学模型,探求问题解决的方法,使学生把实际问题抽象成数学问题,在应用数学知识解决实际问题的过程中进一步渗透和领悟数学思想方法。例如,客车和货车同时从甲、乙两镇的中点向相反的方向行驶。3小时后客车到达甲镇,而货车离乙镇还有30千米。已知货车的速度是客车的3/4,求甲、乙两镇相距多少千米?分析:由题意知,客车3小时行完全程一半,货车3小时行完全程的一半少30千米。如设甲乙两镇相距z千米,依据“货车的速度是客车的3/4”,可得方程:多数学生都选用了这种方法。教学时不能停留在此,继续引导学生变换一种方式思考:将已知条件“货车的速度是客车的3/4”改变一种叙述方式“货车与客车的速度比是3:4”,因行车时间相同,所以货车与客车所行路程比是3:4,即货车行3份,客车行了4份,货车比客车少行1份少行30千米,因此易知客车行了4份行了120千米,货车行了90千米,甲乙两镇相距240千米。这样,通过转化,使学生体会到分数应用题也可采用整数解法,即可采用比例应用题的方法进行解答,从而巩固与提高学生解答分数应用题的能力,更重要的是让学生感受到转化的方法能变繁为简、化难为易,有助于培养思维的灵活性,克服思维的呆板性。实际上,在数学解题中经常用到的还有诸如数形结合、化归、符号化等思想方法,恰当运用这些思想方法不仅能提高解题效率,还能激发学生强烈的求知欲与创造精神。
总之,在教学过程中,加强数学思想方法的渗透,在知识的呈现过程中,让学生感知数学思想方法,在解题思路的探索中,让学生感受数学思想方法,在实际问题的解决中,让学生体验数学思想方法,这不仅会提高学生的数学素养,还会为他们进一步学习数学打下扎实的基础。
❼ 小学数学数与代数包含哪几个方面
小学数学数与代数包括四个方面:整数、小数、分数、百分数
一:整数
1、自然数
2、正数
3、负数
知识点二:小数
1、小数的意义
2、小数大小的比较
3、数的改写与求近似数
知识点三:分数
1、分数的意义
2、分数单位
3、分数的分类
4、分数的基本性质
5、分数与除法的关系
6、约分
7、最简分数
8、通分
9、分数大小的比较
10、分数化小数
11、小数化为分数
12、分数的基本性质与小数基本性质的关系
知识点四 :百分数
1、 求常见的百分率
2、 求一个数比另一个数多(或少)百分之几
3、 求一个数的百分之几是多少
4、 已知一个数的百分之几是多少,求这个数
5、 折扣
6、 利率
(7)小学数学代数公式大全扩展阅读
《小学数学课程标准》中关于数与代数部分的部分要求:
1、数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
2、符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
3、经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量。
4、"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
❽ 小学数学中数与代数包括哪些教学内容
都是些简单的一元一次方程。