『壹』 小学毕业数学(6)
50除以3/4=200/3=66又2/3
67-66又2/3=1/3
4除以1/3=12双
求师徒工作效率比:1/8:1/10=5:4
求每份多少个:100/(5-4)==100个
求总个数100*(4+5)=900个
求余下多少:1-4/5=1/5
求乙工作效率;1/5除以2=1/10
求甲乙工作效率和:4/5除以3=4/15
求甲工作效率:4/15-1/10=1/6
求甲独做时间:1除以1/6=6天
“已知甲乙两车速度比8:5.”求甲行全程的几分之几:
5/18除以5乘以8=4/9 (不好意思,找不到乘除号。)
求总路程:24除以(5/9-4/9)=216千米
求甲还余的路程:216-216*(4/9)==120千米。
『贰』 小学六年级数学毕业资料
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能运完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。甲每小时行走5千米,乙每小时行走多少千米?7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军各有邮票多少张?14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?15、学校买一台电脑和一台彩电共用去8860元,已知一台电脑的价格是彩电的2倍,一台电脑和一台彩电各是多少元?16、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5倍,两个年级各植多少棵?17、两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?18、两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?19、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?20、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5元。平均每度电多少元?21、公共汽车上原有一些人,又上来25人,然后再下去了8人,这时还剩34人。公共汽车上原来有多少人?22、王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长是宽的3倍,这个养鸡场的长和宽各是多少米?23、王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长比宽多80米,这个养鸡场的长和宽各是多少米?24、三、四年级共植树360棵,其中四年级植的棵数比三年级的2倍还多30棵。三年级植树多少棵?25、动物园里猴子的只数是熊猫的6倍,猴子比熊猫多30只,猴子与熊猫各有多少只?26、一枝钢笔的价钱是一枝圆珠笔的4倍,李老师买了一枝钢笔和5枝圆珠笔,一共用了12.6元。钢笔和圆珠笔的单价各是多少元?27、上海"东方明珠"电视塔高468米,比一座普通住宅楼的31倍多3米,这幢普通住宅楼高多少米?28、爸爸的年龄是小明的3.7倍,小明比爸爸小27岁。爸爸和小明各多少岁?29、小明买5本日记本比买1本故事书多用5.8元,已知一本故事书的价钱正好是一本日记本价钱的3倍。一本日记本的价钱是多少元?30、长方形的周长是19.4米。长比宽的2倍少0.8米,这个长方形的长、宽各是多少米?31、两地相距660千米,甲车每小时行32千米,乙车每小时行34千米,两车分别从两地同时出发相向而行,经过几小时相遇?32、小东、小英同时从某地相背而行,小东每分钟走50米,小英每分钟走45米,经过多少分钟两人相距285米?33、两列火车同时从甲、乙两城相对开出,慢车每小时行60千米,快车每小时行80千米,两城相距770千米,两车开出几小时后还相距210千米?34、甲、乙两地相距480千米,客车、货车分别从甲、乙两地同时出发相向而行,客车每小时行70千米,货车每小时行50千米,相遇时,两车各行了多少千米?35、一辆轿车和一辆摩托车分别从甲、乙两地相向而行,两地相距500千米,摩托车上午8点出发,每小时行40千米,轿车上午10点出发,每小时行60千米,问几点两车可以相遇?36、一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?37、甲乙两辆汽车同时从同一地点向相反的方向行驶,4小时后两车相距300千米,已知甲车每小时行40千米,乙车每小时行多少千米?38、两地相距480千米,甲乙两列火车同时从某地相对开出。经过4小时相遇。已知甲火车每小时比乙火车慢8千米,求甲乙两列火车的速度各是多少千米?39、学校买了18个篮球和20个足球,共付了490元,每个篮球14元,每个足球多少元?40、师徒两人在15天中共完成465个零件。师傅每天制造18个,师傅每天完成的件数比徒弟多多少个?41、两地相距400米,两人从两地同时出发向相反的方向而行,5分钟后两人相距960米,甲每分钟走50米,乙每分钟走多少米?42、甲、乙两车同时从两地相向开出,甲车每小时行50千米,经过3小时已驶过中点30千米,此时甲车与乙车还相距6千米,求乙车每小时行多少千米?43、甲、乙两个工程队共同开凿一具隧道。15天共开凿了2070米,甲队每天开凿65米,乙队每天开凿多少米?44、甲、乙两个工程队共同开凿一个隧道。开凿了15天,甲队比乙队少开凿了120米,甲队每天开凿65米,乙队每天开凿多少米?45、甲、乙两个工程队共同开凿一个隧道。甲队每天开凿65米,乙队每天开凿73米,铺了多少天后,甲队比乙队少铺120米?46、粮站有大米64吨,要求一次运往某地,大卡车每辆装5吨,小卡车每辆装3吨,现有大卡车8辆,还需要小卡车几辆?47、甲、乙两地相距420千米,一辆汽车从甲地开往乙地,每小时行60千米,行了240千米后遇到从乙地开来的另一辆汽车。如果从乙地开往甲地的汽车每小时行40千米,算一算,这两辆汽车是不是同时开出的?48、甲乙两队合修一条63.2千米的路,两队共同修7天后,剩下的由乙按原来每天3.4千米的速度完成,又修了5天,甲队每天修多少千米?49、华村现有106户装了电话,比原来装电话户数的13倍多2户,原来有多少户装了电话?50、用长120厘米的铁丝围成一个长方形,长是宽的1.5倍,求它的宽是多少厘米?
『叁』 小学毕业数学试卷及答案
盼子飞教育六年级数学培优试题
姓名 分数
一、 填空。(每题3分)
1)、把一个圆平均分成若干份,在拼成一个长方形,长方形的长是9.42分米,宽是()分米,面积( )平方分米。
2). 一次数学测验只有两道题,做对第一题的有42人,做对第二题的有48人,这个班60人每人至少做对1题,那么两道题 全做对的人数占全班人数的( )3). 有一池水,当水结成冰时,它的体积增加了l/11;当冰化成水的时候,体积减少了( )
4)、这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是_____.
5)、用0、1、2、3、4至少能组成( )数字不重复的三位数。
6)、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有( )人两个小组都不参加。
7)、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了( )段。
8)50除以7的商的小数点后面第4个数字是( ),小数点后面第30个数字是( )。
9)、一个长方形,如果高增加2cm,就变成一个正方形,这时表面积比原来增加56平方分米,原来长方体体积是( ).
10)、一个长方体表面积为314平方分米,底面面积为72平方分米,底面周长为34分米,它的体积为( )立方分米。
11)、正方体鱼缸的表面积为259.2平方分米,它的体积为( )立方分米。
12)在一个直径为为10厘米的圆内画一个最大的正方形,这个正方形的面积是( )平方厘米。
13)、长方体三个面的面积分别是10平方分米,15平方分米、6平方分米,那么这个长方体的体积为( )立方分米。
14)、已知甲数=2×a×3×7,乙数=2×3×b×5×11且a,b互质,a≠b≠0,那么甲乙两数的最大公约数为( ),最小公倍数( )。
15)、 两个四位数A275与275B相乘要使它们的积能被72整除A是( )、B是( )。
16)、时钟4点钟敲4下,6秒钟敲完;那么12点钟敲12下,( )秒钟敲完.
17)把6个边长为7厘米的正三角形拼成一个平行四边形,周长减少了( )厘米。
18)已知圆柱与圆锥的高相等 底面半径的比是1:2,他们的体积比是( ):( )
19)欢欢+迎迎+你你=欢迎你 欢欢= ( ) 迎迎=( )你你=( )欢迎你=( )
20)、一箱鸡蛋第一次卖出它的一半零3个, 第二次卖出剩下的一半零3个,第三次卖出第二次剩下的一半零3个,第四次卖出第三次剩下的一半零3个,最后箱里还剩3个鸡蛋,这箱鸡蛋有( )个。
二.解决问题(每题6分)
21)、如图,四边形AB= 8cm CD=2cm,求四边形ABCD的面积为多少平方厘米?
22)一批葡萄进仓库时重250千克,测量含水量为99%,过了一段时间,测的含水量为96%,这时葡萄的重量是多少千克
23)、甲乙两人从AB两地相向而行,结果在离B地600米处相遇,二人接着行走,分别到达BA两地再返回,结果第二次在距A地300米相遇,AB两地相距多少米?
24)一项水利工程,甲单独做要8天完成,乙单独做4天完成,甲乙合作,中间甲因病休息了1天,完成任务时,乙工作了几天 ?
25) 一个圆柱形容器从里面量直径8分米,里面盛一部分水,现在用一个长100厘米,底面周长为2.512厘米,带刻度的圆柱棒量得水面离容器上端3分米,现在 放进一个石块,然后把圆柱棒放进水里,显示刻度6.5分米,求这个石块的体积。
26)若干盐水加入一定量的水后,盐水浓度降到3%,再加入同样多的水后浓度降到2%,问,如果再加入同样多的水后浓度降到多少?
27)学校到中百超市商场购买了4只足球和6只排球,共花去660元,后来中百超市的足球单价涨了10%,排球单价便宜了15%,这样共需要636元。原来足球和排球的单价各是多少元?
28)甲乙两辆汽车同时从A地向相反方向行驶,分别驶入B地和C地。已知A,B之间的路程是A,C之间的十分之九,当甲车行驶60km时,乙车行驶的路程与剩下的路程比是1:3,这时两辆汽车离目的地的路程相等,求A,C之间的路程??
29)某工厂第二车间工人的人数是第一车间的75%,第一车间招生若干个工人后,第一.二车间的人数比是7:4,第二车间再招若干个工人后,第一.二的车间的人数比是9:8,已知第二车间多招5个人,那么原来第二车间有多少人?
30)、一个皮球掉进一个圆柱形水缸内,有高度的三分之一浮出水面,已知水缸的内底面直径8分米,现在水深90分米,皮球的直径6分米,把皮球拿出后水深87分米,求皮球体积。(球体积公式=圆周率*半径立方)
『肆』 小学毕业数学试卷
一共俩张试卷,不够的话还可以再添。
(第一张)无答案
一、选择题(把正确答案的序号写在后面的括号里)
1、如果a÷7/8=b×7/8(ab都是自然数),那么( )。
①a>b ②a=b ③ a<b
2、在自然数中,凡是5的倍数( )
①一定是质数 ② 一定是合数 ③可能是质数,也可能是合数
3、小麦的出粉率一定,小麦的重量和磨成的面粉的重量( )
①成反比例 ②成正比例 ③不成比例
4、一个比的前项是8,如果前项增加16,要使比值不变,后项应该( )。
①增加16 ②乘以2 ③除以1/3
5一个三角形的三个角中最大是89度,这个三角形是( )
①锐角三角形 ②直角三角形 ③钝角三角形
6、一个圆柱体,如果它的底面直径扩大2倍,高不变,那么它的体积扩大( )倍。
① 2 ② 4 ③ 6
二、填空题
1、二千零四十万七千写作( ),四舍五入到万位,约是( )万。
2、68个月=( )年( )个月 4升20毫升=( )立方分米
3、0.6:( )= 9.6÷( )=1.2= 1 5 =( )%
4、自然数a除自然数b,商是18,a与b的最小公倍数是( )。
5、在比例尺是1 :50000的图纸上,量得两点之间的距离是12厘米,这两点的实际距离是( )千米。
6、在一个比例里,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是( )。
7、一个圆柱体和一个圆锥体等底等高,如果它们的体积相差32立方分米,那么圆锥体的体积为( )立方厘米。
8、从168里连续减去12,减了( )次后,结果是12。
9一根钢材长5米,把它锯成每段长50厘米,需要 3/5小时,如果锯成每段长100厘米的钢段,需要( )小时。
10、一个长方体木料的长和宽都是4分米,高是8分米,这根木料的体积是( );如果把这根木料锯成两个正方体,那么这两个正方体的表面积的和是( )。
11、一个长方形的面积是210平方厘米,它的长和宽是两个连续的自然数,这个长方形的周长是( )。
三、观察与思考
算式中的A 和 B各代表一个数。已知A+ ×0.3=4.2,B ÷0.4=12。
那么,A =( ),B =( )
四、计算题
86400÷120÷3 16×45+99×1001×0
五、列式计算
1. 已知甲数是乙数的1.4倍, 2、 某机关精简后有工作人员75人,
两数相差9.8,求乙数. (用方程解) 比原来少45人,精简了百分之几?
2、甲数是33.5,乙数与丙数的平均数是30.5,
这三个数的平均数是多少?
六、应用题
1、甲乙两地相距405千米。一辆汽车从甲地开往乙地,4小时行驶了180千米。照这样的速度,再行驶多少小时,这辆汽车就可以到达乙地?
2、压路机的滚筒是一个圆柱体。滚筒直径⒈2米,长⒈5米。现在滚筒向前滚动120周,被压路面的面积是多少?(π取3.14)
3、某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?(用比例解)
4、加工一批零件,甲乙合作5小时完成,甲独做9形式完成。已知甲每小时比乙多加工2个零件,这批零件共有多少个?
5、体育场买来16个篮球和12个足球,共付出760元。已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元?
6.某商店购进一批皮凉鞋,每双售出价比购进价多15%。如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。皮凉鞋的购进价每双多少元?
7.甲乙两堆煤,如果甲堆运往乙堆10吨,那么甲堆就会比乙堆少5吨。现在两堆都运走相同的若干吨后,乙堆剩下的是甲堆剩下的17 。这时甲堆剩下的煤是多少吨?
(第二张)有答案
一、填空题:
2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.
大的分数为______.
4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.
5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.
7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.
8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.
10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.
二、解答题:
1.求在8点几分时,时针与分针重合在一起?
2.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?
3.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?
以下小升初数学试题答案,仅供参考:
一、填空题:
1.(B)
取倒数进行比较.
2.(16)
把各数因数分解.33=11×3;51=17×3;65=13×5;77=11×7;85=17×5;91=13×7,所以33×85×91=77×51×65故差为91+85+33-77-65-51=16.
5.(421)
由A+B+C=7,A、B、C都是自然数,且A>B>C,所以A=4,B=2,C=1.即三位数为421.
6.(400)
7.(72)
没打洞前正方体表面积共6×3×3=54,打洞后面积减少6又增加6×4(洞的表面积),即所得形体的表面积是54-6+24=72.
8.(9块)45%
9.(3994)
10.27角6分
不妨设甲家用电x度,乙家用电y度,因为96既不是20的倍数,也不是9的倍数.所以必然甲家用电大于24度,乙家小于24度.即x>24≥y.由条件得.24×9+20(x-24)=9y+96,20x-9y=360,由9y=20x-360,20|9y,又(9,20)=1,所以|20y.当0≤y≤24时,y=20或0.而y=0即x=18<24,矛盾,故y=20,x=27.甲应交24×9+20×(27-24)=276(分)=27.6(角).
二、解答题:
考虑8点时,分针落后时针40个格(每分为一格),而时针速度为每分
2.(1344)
设洗衣机x元,则每月应得报酬为:
3.(16,10,7)
列表用逆推法求原来兄弟三人的苹果数:
所以老大年龄为13+3=16(岁),老二年龄为7+3=10(岁),老三年龄为4+3=7(岁).
『伍』 小学毕业数学考试试卷
2009小学数学毕业模拟试题 一、 填空。 1.十八亿三千零四万零九十,写作( ),省略亿后面的尾数取近似值是( )。 2.5.07吨=( )千克,2.8升=( )毫升。 3.5/9的分数单位是( ),它有( )个这样的单位,再加上( )个这样的单位就是1。 4.在6/7,0.8...
『陆』 新编小学毕业复习宝典--数学(答案)
http://hi..com/530030468/blog/item/f6ee9923c7768245ad34de82.html
这里有大量的小学复习的知识点!
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
……………………
『柒』 小学毕业数学试题
2010-2011人教版六年级(下)数学期末综合检测
题号 一 二 三 四 五 六 总分
一、我会填(20分)
1、一个多位数由9个亿,8个百万,7个万和8个千组成,这个数读作:_______________,改成用“万”作单位的数是:________________.
2、小数1.4956保留三位小数是:__________,保留两位小数是:__________.
3、2.4时=________时_________分,3立方分米50立方厘米=___________升。
4﹑4a=b(a﹑b都不是为0的自然数),a和b的最大公约数是:___________,最小公倍数是:__________.
5﹑一个三角形三个内角度数的比是1:1:2,这个三角形既是一个__________三角形,又是一个___________三角形。
6﹑0.454﹑ 和45.5%中最大的数是___________,把它们从小到大排列,第二个数是___________.
7﹑小丽读一本故事书,第一天读了全书的 还多8页,第二天读了全书的 少5页,这时还剩下73页。这本故事书共有_________页。
8﹑把体积是1立方分米的正方体木块切成棱长是1厘米的小正方体木块,能切成________个,把这些小木块排成一行,有________米长。
9﹑一个圆锥形钢坯,底面周长是12.56厘米,高是12厘米,现在要把它锻造成一个和它等底的圆柱形零件,这个零件的高是_________厘米。
10﹑给甲﹑乙﹑丙三位歌手投票,每位投票人可投给任意两位歌手,至少有______人投票,才能保证其中至少有4位投票人的投票情况完全相同。
二﹑数学小法官(对的打“√”,错的打“×”)(5分)
1﹑相邻的三个自然数的平均数就是中间的数。
2﹑每年的第三季度与第四季度的天数相同。
3﹑某场足球比赛的结果是4:6,化简后是2:3。
4﹑分母是15的分数,一定不能化成有限小数。
5﹑如右图,任意摸一个球,从甲箱中摸到黑色球的可能性与从乙
箱中摸到黑色球的可能性相同。
三﹑对号入座(10分)
1﹑ ,1.5和﹙ ﹚四个数能组成一个比例。
A﹑6 B﹑4 C﹑ D﹑
2﹑钟面上分针走一圈,时针转动的角度是﹙ ﹚。
A﹑60º B﹑30º C﹑15º
4﹑当c一定时,a和b成反比例的条件是( )。
A﹑a÷b=c B﹑c×a=b C﹑a×b=c D﹑无法确定
5﹑已知一个圆锥的体积是20立方厘米,一个圆柱与它等底,要使这个圆柱的体积是30立方厘米,它的高应是圆锥高的( )。
A﹑2倍 B﹑ 倍 C﹑ D﹑
三﹑计算(20分)
1﹑直接写出得数。(12分)
263+198= 27×1.01= 1+0.5%= 18× =
1-0.999= 1999﹢999= 23.4-3.7-6.3-= 3.6÷ =
4.71+2.01= 5.6+2.7= 1÷1%=
2﹑用简便方法计算下面各题。(8分)
四﹑分别画出从正面,上面,右面看到的形状。(10分)
正面 上面 右面
五﹑看图回答问题(10分)
⑴蛋白质的含量占奶粉总量的( )%。
⑵蛋白质的含量是225克,乳脂的含量有( )克。
⑶乳糖的含量比其他的含量多这种奶粉的( )%。
⑷把这个扇形统计图改画成条形统计图。
六、解决问题(25分)
1﹑同学们进行体操表演,站成8个方阵,每个方阵每行站21人,站21行。估一估,参加团体操表演的学生大约有多少人?
2﹑压路机前轮直径是1.2m,滚筒长1.8m,滚筒滚动一周能压路面多少平方米?
3、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本,如果每本16张,可以装订多少本?
4、配制一种药液,药粉和水的质量比是1:4.400g药粉需加水多少克?配制4100g药液,应加水多少克?
5、修路队修一段公路,第一天修了这段公路的 ,第二天修了这段公路的40%,两天共修了450m,这段公路有多少米?
『捌』 小学毕业数学重点难点题
1.一个数的百位上是5,百分位上是4,其余各位上都是0。这个数写作( ),保留一位小数是( )。
2. 在6、10、18、51这四个数中,( )既是合数又是奇数。( )和( )互质。 3.从0、4、5、8、9中选取三个数字组成能被3整除的数。在这些数中最大的是( ),最小的是( )。
3.自行车车轮向前滚动两周走过的距离是a米,车轮的周长是( )米,直径是( )米。
4.某地区,50名非典型肺炎感染者中,有12名是医护人员,占( )%。感染的医护人员与其他感染者人数的比是( )。
5.李明买了4000元国库券,定期三年,年利率为2.89%,到期后,他把利息捐给“希望工程”支援贫困儿童。李明可以捐( )元给“希望工程”。
6.一幅中国地图的比例尺是1:4500000,改写成线段比例尺是( )在这幅地图上,量得南京到北京的距离是20.4厘米,南京到北京的实际距离是( )千米。
二.选择:
1.在下列分数中,( )不能化成有限小数。
① 7/28 ② 13/40 ③ 9/25 ④ 8/15
2.男生人数比女生人数多,男生人数与女生人数的比是( )。
①1:4 ②5:1 ③5:4 ④4:5
3.下列各题中,相关联的两种量成正比例关系的是( )。
① 等边三角形的周长和任意一边的长度 ②圆锥的体积一定,底和高 ③正方体的棱长一定,正方体的体积和底面积 ④利息和利率
4.在估算7.18×5.89时,误差较小的是( )。
①8×6 ②7×6 ③7×5 ④8×5
5.将圆柱的侧面展开成一个平等四边形与展开成长方形比( )。
①面积小一些,周长大一些 ②面积相等,周长大一些
③面积相等,周长小一些 ④面积相等,周长大一些
三.判断下面的说法是不是正确。
1.在小数点的后面添上"0"或去掉"0",小数的大小不变。( )
2.小明说:"我表妹是1998年2月29日出生的。"( )
3.含有约数2的自然数一定是偶数.。( )
4.角的两条边是线段.。( )
5.任何两个数的积都比它们的商大。 ( )
四.计算。
1.直接写得数。
15×3/20= 2/3÷0.5÷2= 13/4+0.25= 0.1÷1%= 2.5÷5=
2/5÷1/10= 2/3—1/4= 4.1—1.3= 2.8—4/7+1.2= 3.5×9+3.5=
2.求未知数X。
3/5:12=1/2:X X—0.15X=8.5 3.6:X=2/3
五.应用题。
1.一种"84"消毒液包装纸上写明:清洗浴缸时需要将原液和清水按1:300配制.李奶奶倒出这种消毒液10克,清洗浴缸需要多少千克清水配制? (用比例解)。
2., 甲乙两人分别从A, B两地同时同向而行, 甲每分钟行100米, 乙每分钟行120米, 12.5分钟后两人相距150米.A ,B两地相距多少米?
3.一张长12.56米,宽3米的长方形苇席,围成以长为底面周长的圆柱形粮囤(接头消耗不计),这个围成的粮囤的容积是多少立方米 ?
4.张庄去年原计划造林128公顷,实际完成计划的125%,实际比计划多造林多少公顷 ?
祝你好运啦~~~~
『玖』 小学毕业数学应用题
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
解:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005
从1000~1999千位上一共999个“1”的和是999,也能整除;
200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,
问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?
答案为6.375或6.4375
因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375
当是103时,103/16=6.4375
4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.
答案为476
解:设原数个位为a,则十位为a+1,百位为16-2a
根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,则a+1=7 16-2a=4
答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.
答案为24
解:设该两位数为a,则该三位数为300+a
7a+24=300+a
a=24
答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?
答案为121
解:设原两位数为10a+b,则新两位数为10b+a
它们的和就是10a+b+10b+a=11(a+b)
因为这个和是一个平方数,可以确定a+b=11
因此这个和就是11×11=121
答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.
答案为85714
解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)
再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x
根据题意得,(200000+x)×3=10x+2
解得x=85714
所以原数就是857142
答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察
abcd
2376
cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。
先取d=3,b=9代入竖式的百位,可以确定十位上有进位。
根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位,便可知只有当c=6,a=3时成立。
再代入竖式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.
解:设这个两位数为ab
10a+b=9b+6
10a+b=5(a+b)+3
化简得到一样:5a+4b=3
由于a、b均为一位整数
得到a=3或7,b=3或8
原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种 B 36种 C 59种 D 48种
解:
5全排列5*4*3*2*1=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
五.容斥原理问题
1. 有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根据容斥原理最小值68+43-100=11
最大值就是含铁的有43种
2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )
A,5 B,6 C,7 D,8
解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。
分别设各类的人数为a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后将④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人数,可以求出它们的整数解:
当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22
又根据a23=a2-a3×2……⑤可知:a2>a3
因此,符合条件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。
故只解出第二题的学生人数a2=6人。
3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
答案:及格率至少为71%。
假设一共有100人考试
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)
100-29=71(及格的最少人数,其实都是全对的)
及格率至少为71%
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21
解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样.
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:
6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
6*5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
6*5+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)
不可能。
因为总数为1+9+15+31=56
56/4=14
14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
多给你一些吧,谢谢请采纳了,啊啊啊谢谢采纳吧
『拾』 小学毕业数学应用题
1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?
2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?
3、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?
4、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?
5、做一个600克豆沙包,需要面粉、红豆和糖的比是3:2:1,面粉、红豆和糖各需多少克?
6、两桶油共重27千克,大桶的油用去2千克后,剩下的油与小桶内油的重量比是3:2。求大桶里原来装有多少千克油?
7、一个长方体的棱长和是144厘米,它的长、宽、高之比是4:3:2,长方体的体积是多少?
8、小红有邮票60张,小明有邮票40张,小红给多少张小明,两人的邮票张数比为1:4?
9、两个城市相距225千米,一辆客车和一辆货车同时从这两城市相对开出,2.5小时后相遇,8、知货车与客车速度比是4︰5,客车和货车每小时各行多少千米?
10、用一根长282.6厘米的铁条焊接成一个圆形铁环,它的半径是多少厘米?