⑴ 谈谈在小学数学教学中如何运用转化思想
小学数学修订后的课标在原来“双基”的基础上,提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。 小学数学思想方法许多,基本的数学思想方法有:转化思想方法、分类思想方法、集合思想方法、统计思想方法、假设思想方法、对应思想方法、比较思想方法、符号化思想方法、类比思想方法、数形结合思想方法、极限思想方法、代换思想方法、可逆思想方法以、化归思想方法、变中抓不变思想方法、数学模型思想方法、整体思想方法等,结合本周教学比武中的课例谈谈数学教学中渗透转化思想方法:
1.化新为旧。根据学生已有的新旧知识的联系,将新知识转化为已有的知识来解决。
如:赖传淇老师执教的《通分》一课中,出示2/5○1/4,进行比较大小。异分母分数大小的比较对学生来说是新的知识,学生不会比较,老师启发学生将新的知识转化成已学过的知识进行解决这个问题。学生进行小组讨论,然后进行汇报,生1:根据分数的基本性质,把这个两个分数化成分母相同的分数,2/5=8/20,1/4=5/20,因为8/20>5/20,所以2/5>1/4;生2:把2/5和1/4这两个分数都化成已学过的小数,2/5=0.4,1/4=0.25,因为0.4>0.25,所以2/5>1/4;生3:根据分数的基本性质,把2/5和1/4这两个分数的分子化成相同,2/5○1/4=2/8,因为2/5>2/8,所以2/5>1/4;生4:将2/5和1/4用线段来表示,画一条长20厘米的线段,平均分成5份,取其中的2份,这两份长8厘米,也就是这条线段总长的2/5,再画一条长20厘米的线段,平均分成4份,取其中的1份,这一份长5厘米,也就是这条线段总长的1/4,因为8厘米>5厘米,所以2/5>1/4。学生运用了化新为旧的转化思想解决了新知。
又如:郭秋妹老师执教的《两位数乘两位数》一课中,学生列出算式24×12后,问学生可以用什么方法计算?学生回答可以用估算、口算、笔算。师问如何口算24×12,学生一时愣住了,郭老师进行引导,可以将它转化成已学过的。学生开始尝试做,不一会儿学生纷纷举手回答。生1:24×3×4=288,把12拆成3×4,就变成已学过的两位数乘一位数的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……学生运用了化新为旧的转化思想解决了新知,发散了思维。
2.化难为易。如:蒋友成老师执教的《数学思考》一课中,出示一题20个点最多可以轻连几条线段?学生一时也无从下手,老师进行引导,将问题化难为易,化大为小,化多为少,将20点转化为1,2,3,4,5点,分别能画几条线段?让学生动手操作、小组讨论。然后学生汇报:点数1,条数0(条);点数2,条数1(条);点数3,条数1+2=3(条);点数4,条数1+2+3=6(条);点数5,条数1+2+3+4=10(条)。让学生观察、分析条数与点数的关系,学生通过观、分析、小组讨论发现:条数的计算方法是从1加2加到点数减1的和。学生发现这个规律后,再来解答20个点最多可以轻连几条线段就轻而易举了,学生就很快的说出算式1+2+3+4+……+19=190(条)。师生进行小结:遇到难的题目,可以将它转化为容易的,简单的来解决,接着找出规律,然后运用规律解决较难的题目,这就是运用了化难为易的转化思想方法。
3.化数为形。如:在计算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通过引导学生化数为形,画一个正方形, 1/2涂上色,空白的也是1/2,涂色部分可以用1减去空白的;接着在空白的1/2上再涂色一半,涂色部分就是1/2+1/4,涂色部分可以用1减去空白的, 涂色部分就是1-1/4,接着在空白的1/4上再涂色一半,涂色部分就是1/2+1/4+1/8,涂色部分可以用1减去空白的, 涂色部分就是1-1/8。从刚才的过程可以发现规律,涂色部分可以用1减去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通过化数为形,可以把这个算式转化成1-1/512=511/512。
4.为曲为直。如:圆的面积公式的推导,就要用到化曲为直的思想方法,通过将圆分割成若干等份,拼成近似的长方形,由圆的半径与面积的关系转化为长方形的长宽与面积的关系,由长方形的面积公式,推导出圆的面积的公式。这里,就是将长方形的面积公式转化为圆的面积公式。在学习圆柱的体积计算时,学生也能很快悟到立体图形之间的联系,感悟到圆柱体积的计算公式。
陶行知先生曾说过:“我以为好的先生不是教书,不是教学生,乃是教学生学。”任何功课最终的目的就是要达到不需要教,需要有会学习的能力、会学习的方法,而数学思想的形成及运用就会产生好的方法,就会提高学习的能力,就会为不教奠定基础。因此,小学数学教师要拓展视野,在教学中渗透数学思想,为学生的终身发展奠基。
⑵ 求助:论文简谈化归思想在数学解题中的应用开题报告 急急急!!1
化归思想是初中数学中常见的一种思想方法。 “化归”是转化和归结的简称。我们内在处理容和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。 正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
⑶ 急!!!化归思想的和谐化原则在小学数学中有什么应用啊!!!
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:
把遇到的没有解决过的问题,
转化归结为已经解决了的问题。
它的基
本原则是:化难为易,化生为熟,化繁为简。
⑷ 如何在小学数学教学中培养化归的思想方法
小学数学知识分为显性知识和隐性知识两个方面。小学数学教材是数学教学的显性知识系统,而数学思想方法是数学教学的隐性知识系统。
在小学阶段数学学科最重要的知识莫过于数学思想方法的知识,它是学生未来能够适应社会和继续学习的一种能力。笛卡尔说过:“数学是使人变聪明的一门学科”。数学思想方法是数学的精髓,是数学精神和科学世界观的重要组成部分,需要长期培养,经常应用,潜移默化。
小学数学常用的数学思想方法有:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思想方法、变中抓不变的思想方法等等。
本文就自己在教学中的实践谈谈如何培养化归的思想方法。
所谓“化归”,就是转化和归结。在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过对问题乙的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。
化归思想的实质,是将新问题转化为已掌握的旧知识,然后进一步理解并解决新问题。它的基本形式有:化未知为已知,化新为旧,化难为易,化繁为简,化曲为直。
一些学生平时学习很认真,可遇到新问题却无从下手,不知道从何开始解决问题,出现这种情况的根本原因就是不会灵活应用已学的数学思想方法去思考问题,实现问题的转化。
那么如何在小学数学教学过程中培养学生掌握化归的数学思想方法呢?
一、搭建新问题向已学知识化归的桥梁
例1.计算 + ==?
学生刚开始学习异分母分数加法,怎样求出它们的和?是一个所要解决的未知问题,为了解决这个问题。
教师搭桥:我们没学过这样的分数加法,但我们已学过 + = 的加法。问:算式的含义是什么?你们能用平面图表示出算式的意义吗?能不能想办法把现在的新问题转化为已学过的问题,从而找出解决问题的途径呢?
教师引导学生必须把 + =?化归为学生能解决的同分母分数相加的问题上来。即通过通分,把异分母分数加法化为同分母分数加法,使之达到原问题的解决。即:
+ (新问题)=(转化为) + (旧问题)== (结论)
当得出结论后,教师一定要追问:你们是怎么想的?是运用什么数学思想方法解决问题的?
看似这平常的、简单的一问,其实化归的数学思想方法在这一问中,得到了升华、得到了加强、得到了巩固。
二、归纳概括出化归思想方法在知识构建中的作用
学完一种知识,比如小数加减法;或学完一类知识,比如,平面图形面积的计算;或学完阶段知识,比如,小学阶段的数学学习结束时,教师就要引导学生归纳概括出我们学习这些知识时,运用了哪些数学思想方法去解决的?从而进一步明确这些个数学思想方法在知识建构中的重要作用。
比如:当学完平面图形时,教师可以引导学生归纳概括出小学阶段我们学过的平面图形的面积的计算公式都是如何推导出来的?即总结概括在同类知识结构中,化归思想方法在知识建构中的运用。
设问:我们都学习过哪些平面图形的面积公式?
总结:长方形、正方形、三角形、梯形、圆形。
启思:同学们想想,这些平面图形的面积都是怎么推导出来的?运用的是什么方法?
在给出充分的时间让学生独立思考、合作探究后,总结概括:
正方形用数格子的方式,得出正方形的面积=边长×边长;
长方形的面积,是用正方形和数格子的方法得出长方形的面积=长×宽;
平行四边形的面积,是把平行四边形转化为长方形的图形,长方形的长就是平行四边形的长,长方形的宽就是平行四边形的高,长方形的面积=长×宽,那么,平行四边形的面积就等于长乘以高。从而推导出平行四边形的面积=底×高;
三角形的面积,是把三角形转化为长方形或平行四边形(或正方形),从而推导出三角形的面积=底×高÷2;
梯形(转化为)长方形(或正方形),从而推导出梯形的面积=(上底+下底)×高÷2
圆的面积:我们用剪一剪、拼一拼、旋转、平移的方法,把圆形化归为一个近似于长方形的图形。发现:圆周长的一半相当于长方形的长,宽相当于圆的半径,平行四边形的面积等于长乘以宽,圆的面积就等于圆周长的一半乘以半径,那么,圆的面积=圆周长的一半×半径= ×r=π× r2 。所以得出圆的面积等于π× r2
我们推导出的平面图形的面积计算公式,都是把一种新图形化归为已学过的图形,从而用已学过的面积公式推导出新图形的面积公式,把没有学过的知识转化为我们已经学过的知识来解决新问题,这种解决数学问题的方法就是——化归的数学思想方法。
化归的数学思想方法,不仅仅在小学阶段学习占有重要的地位,同时,它也是中学、高中学习的一种重要的思想方法,更是我们终身学习的一种思想方法。
当小学阶段学习结束时,教师还要引导学生归纳概括出:化归的数学思想方法在计算中的应用、在几何图形中的应用、在应用题中的应用,从而告诉学生学习数学知识最重要的是思想方法的学习,它是进一步学习知识的最重要的武器。
⑸ 如何在小学数学教学中培养化归思想方法
化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归回结为一个已经能解决的问答题,或者归结为一个比较容易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决. 数学中的化归有其特定的方向,一般为:化复杂为简单,化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单—”;化“高维”为“低维”等
⑹ 一句话,说出,数学中,转化思想,和化归思想,的区别
简而言之,化归是一种目的性转化。
化归思想,将一个问题由难化易,由繁化简,由复杂化简单的过程称为化归,它是转化和归结的简称。
在解决问题的过程中,数学家往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。 把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
化归法是一种分析问题解决问题的基本思想方法.在数学中通常的作法是:将一个非基本的问题通过分解、变形、代换…,或平移、旋转、伸缩…等多种方式,将它化归为一个熟悉的基本的问题,从而求出解答.如学完一元一次方程、因式分解等知识后,学习一元二次方程我们就是通过因式分解等方法,将它化归为一元一次方程来解的.后来我们学到特殊的一元高次方程时,又是化归为一元一次和一元二次方程来解的.对一元不等式也有类似的作法.又如在平面几何中我们在学习了三角形的内角和、面积计算等有关定理后,对n边形的内角和、面积的计算,也是通过分解、拼合为若干个三角形来加以解决的.再如在解析几何中,当我们学完了最基本、最简单的圆锥曲线知识以后,对一般圆锥曲线的研究,我们也是通过坐标轴平移或旋转,化归为基本的圆锥曲线(在新坐标系中)来实现的.其它如几何问题化归为代数问题,立体几何问题化归为平面几何问题,任意角的三角函数问题化归为锐角三角函数问题来表示的例子就更多了.所以,掌握化归的思想方法对于数学学习有着重要的意义.总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答.
⑺ 转化思想在小学数学教学中的应用普遍吗
普遍
数学知识中概念、法则、公式、性质等都是明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,关键是教师如何去发现、发掘教材中蕴含的转化思想。为此,我们有必要对此进行系统的梳理,在理清知识网络的同时系统了解数学思想方法在小学各阶段、各章节中的分布,例如小学数学的教学内容中,加法与减法的转化、乘法与除法的转化,分数与小数的转化,除法、分数与比的转化,二维空间(平面图形)之间的转化、三维空间(立体图形)之间的转化、二维与三维空间之间的转化,数与形的转化等等。这样才能结合双基的教学,有意识地向学生渗透,逐步培养他们初步地掌握相关的转化的思想和方法。
数学教学论告诉我们,数学知识是数学思想的载体,进行数学思想方法教学时要注意以数学知识为载体,把隐藏于知识背后的思想方法揭示出来,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。因此一节课结合具体教学内容考虑渗透哪些数学思想方法、怎么渗透、渗透到什么程度,老师都应有一个精心的设计和具体的要求。如《平行四边形的面积》的教学可以设计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想,掌握方法,渗透“变与不变”的函数思想;培养学生分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。
⑻ 化归与转化思想在教学中如何渗透
一、 引新中渗透
例如:老师在教学分数的基本性质时,有分数的基本性质的学习迁移到比的基本性质的学习。
教学中教师应抓住新旧知识之间的联结点,创设情境,让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移。如教学京版数学教材第十二册圆柱的认识一课时,我是这样进行导入环节的:
如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。
二、过程中渗透
1、渗透对应的思想方法。对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
在小学数学中,有很多方面运用了对应的数学思想方法,如教材六年级教材中的数对,和根据方向和距离来确定物体的位置,无不融进了一一对应的数学思想。
2、渗透分类的思想方法。“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。
3、渗透集合的思想方法。集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。
例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。
4、渗透符号化思想。渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。
例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。
5、渗透数形结合的思想。数形结合思想方法是指将数与式的代数信息和点与形的几何信息互相转换,把数量关系的精确深刻与几何图形的形象直观有机地结合起来,用代数方法去解决几何问题或用几何方法去解决代数问题,从而易于将已知条件和解题目标联系起来,使问题得到解决。
例如:老师在教学应用题时,常常要借助于线段图来帮助学生理解,使教学起到事半功倍的效果。如“修路队前三天修了全长的30%,照这样计算,修完全程一共需要多少天?”通过画图来进行教学,学生易于理解,老师讲课也轻松。这样做,帮助学生借助数形结合理解了退位减法笔算算理,利于学生掌握笔算方法。
三、练习中渗透
练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。
例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这
⑼ 小学数学思想中的化归思想与转化思想怎么区分
化归思想和转化思想实质上是一样的。都是将一个问题由难化易,由繁化简,由复杂化简单的过程