建议你买本书来预习:
商品名称自:小学语文重难点手册·六年级上册·人教版
从书名:小学语文重难点手册·六年级上册·人教版
ISBN编号:978-7-5634-0926-6
作者:桂国隽
出版社:延边大学出版社
出版日期:2008年6月
开本:32开
字数:960千字
折扣:全价
市场价:8.90元/册
会员价:8.90元/册
㈡ 小学人教版数学六年级上册知识点
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
仅供参考:
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)
【盈亏问题公式】
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
【鸡兔问题公式】
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二 (4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答 略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一 (4×1000-3525)÷(4+15)
=475÷19=25(个)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
【植树问题公式】
(1)不封闭线路的植树问题:
间隔数+1=棵数;(两端植树)
路长÷间隔长+1=棵数。
或 间隔数-1=棵数;(两端不植)
路长÷间隔长-1=棵数;
路长÷间隔数=每个间隔长;
每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:
路长÷间隔数=棵数;
路长÷间隔数=路长÷棵数
=每个间隔长;
每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:
占地总面积÷每棵占地面积=棵数
【求分率、百分率问题的公式】
比较数÷标准数=比较数的对应分(百分)率;
增长数÷标准数=增长率;
减少数÷标准数=减少率。
或者是
两数差÷较小数=多几(百)分之几(增);
两数差÷较大数=少几(百)分之几(减)。
【增减分(百分)率互求公式】
增长率÷(1+增长率)=减少率;
减少率÷(1-减少率)=增长率。
比甲丘面积少几分之几?”
解 这是根据增长率求减少率的应用题。按公式,可解答为
百分之几?”
解 这是由减少率求增长率的应用题,依据公式,可解答为
【求比较数应用题公式】
标准数×分(百分)率=与分率对应的比较数;
标准数×增长率=增长数;
标准数×减少率=减少数;
标准数×(两分率之和)=两个数之和;
标准数×(两分率之差)=两个数之差。
【求标准数应用题公式】
比较数÷与比较数对应的分(百分)率=标准数;
增长数÷增长率=标准数;
减少数÷减少率=标准数;
两数和÷两率和=标准数;
两数差÷两率差=标准数;
【方阵问题公式】
(1)实心方阵:(外层每边人数)2=总人数。
(2)空心方阵:
(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。
或者是
(最外层每边人数-层数)×层数×4=中空方阵的人数。
总人数÷4÷层数+层数=外层每边人数。
例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?
解一 先看作实心方阵,则总人数有
10×10=100(人)
再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是
10-2×3=4(人)
所以,空心部分方阵人数有
4×4=16(人)
故这个空心方阵的人数是
100-16=84(人)
解二 直接运用公式。根据空心方阵总人数公式得
(10-3)×3×4=84(人)
【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。
(1)单利问题:
本金×利率×时期=利息;
本金×(1+利率×时期)=本利和;
本利和÷(1+利率×时期)=本金。
年利率÷12=月利率;
月利率×12=年利率。
(2)复利问题:
本金×(1+利率)存期期数=本利和。
例如,“某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
解 (1)用月利率求。
3年=12月×3=36个月
2400×(1+10.2%×36)
=2400×1.3672
=3281.28(元)
(2)用年利率求。
先把月利率变成年利率:
10.2‰×12=12.24%
再求本利和:
2400×(1+12.24%×3)
=2400×1.3672
=3281.28(元)(答略)
㈢ 人教版小学六年级上册语文全册教案
人教版新课标小学语文六年级上册全套教案,共101页,这里无法全部复制,你到我们网站去下载吧
六年级上册集体备课教案
2、交流生字词的读法,汇报好词,集体品读。
清爽 吟诵 唱和 陡峭 挺拔 精致 奥秘 德高望重 津津乐道 别有深意
谁来简单地说说这篇文章的大致内容?
(三)、学习“出门”,感受心情
1、作者轻装上路,读读课文的一、二自然段,感受他当时的心情。(心情好;高兴)
2、你从什么地方可以看出作者当时心情很好?
出了门,就与微风撞了个满怀,风中含着露水和栀子花的气息。早晨,好清爽!
(1)自由地读读这句话,感受话中所包蕴着的情意与心情。
(2)理解“与微风撞了个满怀”的写法及所包含的韵味。
(3) 带着轻松愉悦激动的心情有感情地朗读句子。
不坐车,不邀游伴,也不带什么礼物,就带着满怀的好心情,踏一条幽径,独自去访问我的朋友。
(1)读读这句话,从什么地方最能看出作者的好心情?
“满怀”是什么意思?与上一句的“满怀”意思一样吗?平时还可以说什么东西是满怀的?用“满怀______”练习说话。
(2)带着满怀的好心情朗读这句话。
(四)、再读课文,捕获感知
1、作者带着满怀的好心情出门访友。请同学们再自由地、放声地读读全文,想想作者去山中访问了哪些朋友,他是如何看待这些朋友的?
2、交流讨论。(友好的;他们是真朋挚友;作者是带着欣赏的眼光在与他的朋友在交流;他们之间感情很真挚……)
(五)、精读课文,感悟深情
1、请同学们再一次跟随着作者去探访他的那些特殊的朋友。认真读读第三自然段到文章的最后,想想从哪些句子可以看出作者跟这些朋友有深厚的感情,可以把你的理解写在句子的旁边。
2、交流同学们划出的句子。
那座古桥,是我要拜访的第一个老朋友。啊,老桥,你如一位德高望重的老人,在这涧水上站了几百年了吧?你把多少人马渡过对岸,滚滚河水流向远方,你弓着腰,俯身凝望着那水中的人影、鱼影、月影。岁月悠悠,波光明灭,泡沫聚散,唯有你依然如旧。
(1)自由读读第三自然段,想象并说说这座古桥的模样。出示古桥图片,思考:作者面对这样一座古老的石桥他联想到了什么?体会这样写的好处。(形象地写出石桥的古老沧桑,暗示了古桥所发挥的作用,指出了作者对于古桥的一片情深)
(2)读读句子,请想象一下,这座古桥在几百年的历程之中,他驮过了哪些人,在他的身上曾经发生过了哪些事?
(3)谈谈你对“岁月悠悠,波光明灭,泡沫聚散,唯有你依然如旧”这句话的理解。
(4)自由朗读;指名朗读;师生共读。
(六)、抄写词语,自主背诵
㈣ [人教版]小学语文(六年级上册),[人教版]小学语文(六年级上册)下载
“轰”的一声巨响,教室的房顶坍塌下来,架成了一个大三角形.孩子们不知道发生了什么事,就惊慌失措地大声喊叫,可是没有人给他们回音.于是孩子们大声哭起来.哭了一会儿,阿曼达突然想起了父亲说的话:“不论发生什么,我总会跟你在一起.”想到这里,阿曼达平静下来,自言自语地说:“我一定要活下来,一定要坚强.”
他大声对同学们:“只要我爸爸活着,就一定会来救我们的.”
有个同学说:“那太好了!我希望你爸爸快点来救我们.”
阿曼达说:“那当然!我想你的爸爸也会来救你的.”
过了一会儿,有个同学哭了起来.阿曼达安慰他说:“你一定要坚强!我爸爸马上就来救我们.我想你们的爸爸有可能正在外面挖呢!所以你们要挺住,千万别哭.”
又过了8小时、12小时、24小时,同学们渐渐地渴了,就对阿曼达说:“阿曼达,我渴了,给我点水喝.”阿曼达扒开石头找书包.“终于找到书包了!”阿曼达说.于是,阿曼达就把水瓶从包里拿出来给了同学,同学便大口大口地喝了起来.又有一个同学说:“阿曼达,我受不了了,在这里呼吸都呼不了了.”阿曼达说:“再坚持一下,我爸爸会来的,你先用口呼吸.”
36小时过去了,同学们着急了,对阿曼达说:“天哪,我想你爸爸不会来了吧?”
阿曼达说:“我爸爸真的会来的.”
37小时了,同学们听到了有人扒石头的声音,阿曼达说:“一定是我爸爸在扒石头.”
㈤ 人教版小学六年级数学上册概念都是有哪些
人教版小学六年级数学上册概念如下:
第一单元位置:
1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。
2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。
3、平移方法:左右平移,列变行不变;上下平移,行变列不变。
第二单元分数乘法:
1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。
4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5、乘积是1的两个数叫互为倒数。
6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
7、一个数(0除外)乘以一个真分数,所得的积小于它本身。
8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9、一个数(0除外)乘以一个带分数,所得的积大于它本身。
第三单元分数除法:
1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除以整数(0除外),等于分数乘这个整数的倒数。
3、整数除以分数等于整数乘以这个分数的倒数。
4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、两个数相除又叫做两个数的比。
6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
11、一个数(0除外)除以一个真分数,所得的商大于它本身。
12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
13、一个数(0除外)除以一个带分数,所得的商小于它本身。
第四单元圆
1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。
11、圆的周长公式:C=πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。
13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
16、环形的周长=外圆周长+内圆周长。
17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d或C=πr+2r
18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。
23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
26、只有2条对称轴的图形是:长方形。
27、只有3条对称轴的图形是:等边三角形。
28、只有4条对称轴的图形是:正方形。
29、有无数条对称轴的图形是:圆、圆环。
30、直径所在的直线是圆的对称轴。
第五单元百分数
1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。
6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
7、百分率公式:
合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%
出勤率=出勤人数÷总人数100%
8、应纳税额:缴纳的税款叫应纳税额。
9、应纳税额的计算:应纳税额=各种收入×税率。
10、本金:存入银行的钱叫做本金。
11、利息:取款时银行多支付的钱叫做利息。
12、利率:利息与本金的比值叫做利率。
13、国债利息的计算公式:利息=本金×利率×时间。
13、本息:本金与利息的总和叫做本息。
单位换算:
1、长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面积单位换算
1平方千米=100公顷1公顷10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、体(容)积单位换算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量单位换算:1吨=1000千克1千克=1000克
运算定律:
1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)
3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc
6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)
7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c)
(5)小学人教版6年级上扩展阅读:
小学六年级数学学习方法
1、抓住课堂
平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。
2、高质量完成作业
不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。
3、勤思考,多提问
对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。
4、总结比较,理清思绪
要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。
要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。
5、有选择地做课外练习
课余时间并不充足,因此在做课外练习时要少而精,多反思
㈥ 小学人教版六年级上册数学复习
1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
一般先看横的数字,再看竖的数字,注意中间是逗号
2.分数乘法的意义:一个数×分数 如4× 表示:求4的 是多少?
分数×一个数 如 ×4 表示:求 的4倍是多少?
3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
4.除以一个不等于0的数,等于乘这个数的倒数
5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数
6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变
7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
8.有关圆的公式:
C= 兀d = 2兀r S =兀r 2
d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2
圆环的面积S = 兀 R 2-兀 r 2
9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息
利息税=本金×利率×时间×20% 或者 利息税=利息×20%
税后利息=本金×利率×时间×(1-20%) 或者 税后利息=利息×(1-20%)
交税后一共可取回多少钱=本金+本金×利率×时间×(1-20%)
10.条形统计图:可以清楚的看出数据的多少
折线统计图:可以清楚的看出数据的增减变化趋势(一般跟时间有关)
扇形统计图:可以清楚的看出各部分同总数之间的关系
㈦ 小学6年级 人教版
建议找几首现来成的,内容上进,励志,或团自结什么的,等等一些歌,当然旋律要动听点的.然后让全班人投票决定.
最好是叫班里的同学,每人都发几首自己喜欢的歌,跟他们说明做为班歌用的.用心的找下.到时你再细选下,选出来的几首再让他们投票产生.班歌的产生最好是全班都参与的,都收集下他们的意见.
当然,有音乐才华的,应该自己写歌,谱曲.这样你们的班歌就会是独一无二的了