❶ 小学生典型数学题库
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
解:45+5×3=45+15=60(千克)
答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解:4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
答:每支铅笔0.2元。
5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
6. 学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
解:第一组追赶第二组的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
解:每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
答:甲乙两地相距560千米。
11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
答:损坏了5箱。
12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
解:4×2÷(12-4)=4×2÷8 =1(时)
答:第二中队1小时能追上第一中队。
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
答:这堆煤有6000千克。
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支铅笔0.2元。
15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解:卡车的数量:
360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)
答:可用卡车12辆,客车9辆。
16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
21. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?
解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
22. 一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
23. 用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
解:(22-10)÷(5-2)=12÷3=4(千克)
答:桶里原有水4千克。
24. 小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
25. 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
26. 把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
27. 一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
29. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
30. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
31. 在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
解题思路:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
32. 水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
33. 学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
34. 学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
解:36+38+5-59=20(人)
答:双科都参加的有20人。
35. 学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
36. 父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
解:(45-5)÷4+5 =10+5 =15(岁)
答:今年儿子15岁。
37. 有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
38. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
39. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
40. 一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
解:(600+1150)÷700 =1750÷700 =2.5(分)
答:火车通过隧道需2.5分。
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
解:600÷(400-300)=600÷100 =6(分)
答:经过6分钟两人第一次相遇
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
50. 一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。
❷ 哪里有小学六年级毕业班考试语文数学英语的复习资料和练习题卷
二○○四年小学毕业班模拟考试语文试卷
题 号一二三四总 分
得 分
一、基础知识(41分)
1、看拼音写词语,再把所填的字按音序排列。(6分)
dǔ jiè zhān liú
目( ) 慰( ) ( )仰 ( )览
yù yuàn ruì mèi
抵( ) 报( ) ( )雪 ( )力
按音序排列: (2分)
2、把下面的字规范、匀称地写在田安格里,再完成填空。(6分)
女 戈 凸
起笔是 末笔是 共 画第四画是
爽 医 迅
共 画 共 画 共 画
最后两画是 最后一画是 第二画是
3、把词语补充完整,再解释所填的字。(6分)
jī kāi guān
神( )妙算 ( )国大典 等量齐( )
zhì pō kān
鼎( )昌盛 ( )负盛名 ( )称楷模
4、在括号里填上能与括号外词语恰当搭配的词语。(5分)
发扬( ) 态度( ) 美丽的( ) 发挥( )
神情( ) 美好的( ) 发展( ) 性格( )
美妙的( ) 奇妙的( )
5、按要求填写词语。(6分)
⑴在括号里写出加点词语的近义词。
a、这是一道奇异的火光。( ) b、他的脸变得严肃、忧虑。( )
c、危峰兀立,怪石嶙峋。( ) d、父亲一味爱着他们。( )
⑵在括号里写出加点词的反义词。
a、叙利奥受父亲的责备后,没有中断抄写工作。( )( )
b、经过改建,街道变得宽阔了,路灯变得明亮了。( )( )
⑶在句中括号里填上恰当的关联词语。
生活在澳大利亚干旱沙漠的巨刺晰蜴,( )长相奇特,( )行为十分怪异。( )谁不小心打翻了水壶,巨刺晰蜴( )会跑过来,它并不低头喝水,却只是直挺挺地站在水渍上,水流光了也不肯离去。
6、把诗(词)句补充完整,再说说句子的意思。(6分)
⑴俏也不争春,
句意:
⑵ ,报得三春晖。
句意:
⑶却看妻子 , 喜欲欢。
句意:
7、把你喜欢的谚语、对联、名言佳句各选两条(副)写下来。(6分)
谚语:⑴ ⑵
对联:⑴ ⑵
名言:⑴
⑵
二、语言实践(8分)
在公共场所, 时有吸烟、吐痰、乱扔果皮纸屑、乱吐口香糖等不良现象发生。如果你看见上述某种不良现象,会怎样进行劝阻?
当我看见有人 时,会这样劝阻:
三、阅读理解(22分)
(一)读《荔枝》中的一段话,按要求做题。(11分)
回到家,还没容我从书包里掏出荔枝,母亲先端出一盘沙果。这是一种比海棠大不了多少的果子,居然每个都长着疤,有的还烂了皮,只是母亲一一剜去了疤,洗得干干净净每个沙果都显得格外清晰,不知老人家洗了几遍才洗成这般模样。我知道这一定是母亲买的处理水果,每斤顶多5分或一角。居家过日子,老人家就这样一辈子过来了。
1、给加点字词选择正确的解释(在序号上打“√”)(3分)
还没容我…… ⑴原谅 ⑵包含 ⑶允许、让 ⑷相貌
居然每个…… ⑴突然 ⑵竟然 ⑶果然 ⑷仍然
居家过日子…… ⑴住在家里 ⑵当家作主 ⑶居民家里
2、概括这段的段意。(2分)
3、这盘沙果原先什么样?
现在什么样? (3分)
4、从这段话中你体会到了什么?(3分)
(二)阅读短文,完成练习。(11分)
相传宋朝时。有一年夏天,朝(庭 廷)举行绘画比赛,画题是“踏花归去马蹄香。”这句诗的意思很明白:人们在春天骑马(尝 赏)花,马蹄由于(睬 踩)着飘落在地上的花(瓣 辫),使马蹄儿变香了。
面对画题,许多画家抓耳挠腮,无从下笔。有的画家画是画了,但都画了满地的落花,再画一个骑马扬鞭的人,却没有把“香”字表现出来。主持比赛的官员看了直摇头。就在这时,有个年轻的画家把他的画递了上来,大家见这幅画上只画了一匹正在奔走的马,马蹄旁画了几只蝴蝶,此外再没画别的东西了。在场的人细细品味后,都对这幅画交口称赞。
蝴蝶为什么绕着马蹄飞舞?不是因为马蹄上沾着落花的香气吗?马蹄上怎么会沾着落花的香气?不是这匹马刚从满地落花的地方踏过来吗?这位聪明的画家用几只蝴蝶把看不见的香气具体地表现出来了,所以这幅画被大家公认为成功的作品。
1、读文思考,从下面的文题中选一个恰当的,填在文前的横线上。(1分)
⑴绘画比赛 ⑵聪明的画家 ⑶诗配画的故事
2、把第一自然段括号里不合适的字划掉。(2分)
3、给加点的字词选择正确的拼音,用“ ”画出。(3分)
抓耳挠腮(ráo láo náo) 马蹄儿(tiér tír tíer)
4、联系上下文解释加点的字词。(2分)
直摇头 细细品味
5、把第三自然段的四个问句,改为不用问号的句子,意思不能变。(3分)
6、简要说说“这幅画被大家公认为成功的作品”的原因。(2分)
三、作文。(30分)
1、书院小学合唱队定于5月20日去市福利院慰问演出,上午8时在学校集合出发。请你于5月19日代合唱队写一个通知,要求合唱队员准时参加。(4分)
2、“学会关心”是联合国教科文组织在中国北京召开的大会上提出的新世界的口号之一。父母、老师乃至全社会都关心爱护我们青少年一代,而我们是否也需要学会关心别人?请以《关心》为题写一篇记叙文,可以写别人对你的关心,也可以写你怎样关心别人。(26分)
要求:①用典型事例,反映别人对你的关心或你对别人的关心。
②结构完整,叙述有条理,语句通顺,书写规范。
❸ 小学生数学练习题
有理数测试题
一、 选择题(每题3分,共30分)
1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元
(A) (B) (C) (D)
2、大于–3.5,小于2.5的整数共有( )个。
(A)6 (B)5 (C)4 (D)3
3、已知数 在数轴上对应的点在原点两侧,并且到原点的位置相等;数 是互为倒数,那么 的值等于( )
(A)2 (B)–2 (C)1 (D)–1
4、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )
(A)同号,且均为负数 (B)异号,且正数的绝对值比负数的绝对值大
(C)同号,且均为正数 (D)异号,且负数的绝对值比正数的绝对值大
5、在下列说法中,正确的个数是( )
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1 B、2 C、3 D、4
6、如果一个数的相反数比它本身大,那么这个数为( )
A、正数 B、负数
C、整数 D、不等于零的有理数
7、下列说法正确的是( )
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
8、在有理数中,绝对值等于它本身的数有()
A.1个 B.2个 C. 3个 D.无穷多个
9、下列计算正确的是()
A.-22=-4 B.-(-2)2=4 C.(-3)2=6 D.(-1)3=1
10、如果a<0,那么a和它的相反数的差的绝对值等于( )
A.a B.0 C.-a D.-2a
二、填空题:(每题2分,共42分)
1、 。
2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = 。小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。
3、若 ,则 = ;
4、大于-2而小于3的整数分别是_________________、
5、(-3.2)3中底数是______,乘方的结果符号为______。
6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
7、在数轴上表示两个数, 的数总比 的大。(用“左边”“右边”填空)
8、仔细观察、思考下面一列数有哪些规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:(1)第7个数是 ;(2)第 n 个 数是 。
9、若│-a│=5,则a=________.
10、已知: 若 (a,b均为整数)则a+b= .
11、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除。答:____________。
12、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
13、已知 ,则a是__________数;已知 ,那么a是_________数。
14、计算: =_________。
15、已知 ,则 =_________。
16、____________________范围内的有理数经过四舍五入得到的近似数3.142。
17、: = 。
18、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。由这句话,正数–a的绝对值为__________;负数–b的绝对值为________;负数1+a的绝对值为________,正数–a+1的绝对值___________。
19、已知|a|=3,|b|=5,且a<b,则a-b的值为 。
20、观察下列等式,你会发现什么规律: , , ,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
21 、观察下列各式 ,。。。请你将猜到的规律用n(n≥1)表示出来 .
22、已知 ,则 ___________。
23、当 时,化简 的结果是
24、已知 是整数, 是一个偶数,则a是 (奇,偶)
25、当 时,化简 的结果为 。
三、计算下列各题(要求写出解题关键步骤):
1、 2、
3、
4、(-81)÷2 ×(- )÷(-16) 5、
6、 7、
四、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的。同样,有理数集合对减法、乘法、除法(除数不为0)也是封闭的。请你判断整数集合对加、减、乘、除四则运算是否具有封闭性?(4分)
利用你的结论,解答:
若a、b、c为整数,且 ,求 的值。
答案:一、1、A 2 A 3 B 4 C 5 C 6 B 7 D 8 D 9 A 10 D
二、1±8,2,16,3,11,4,-1、0、1、2,5,-3.2,6,-7.2,7、右、左,8,
9,±5 10,109,11,-30,-60,-90 12,-120,13,a≥0,正数,14,0,15,-8,16,大于或等于3.1415且小于3.1425,17, 18、-a,b,-1-a,-a+1,19、-2或-8,20, ,21,
22,-1,23, ,24,奇数,25,-a-6
三、1、24 2、-1/5 3、-30 4、-1 5、-47 6、23 7、-96
四、加减乘封闭,除不封闭。
五、2
❹ 求小学数学总复习题库答案
1、一个数,它的亿位上是9,百万位上是7,十万位上和千位上都是5,其余各位都是0,这个数写作( 907505000 ),读作( 九亿零七百五十万五千 ),改写成以万作单位的数( 90750.5万 ),省略万后面的尾数是(90750 )万。 2、把4.87的小数点向左移动三位,再向右移动两位后,这个数是(0.487 )。 3、9.5607是(4 )位小数,保留一位小数约是(9.6 ),保留两位小数约是(9.56 )。 4、最小奇数是(1 ),最小素数(2 ),最小合数(4 ),既是素数又是偶数的是(2 ),20以内最大的素数是(19 )。 5、把36分解质因数是(2×2×3×3 )。 6、因为a=2×3×7,b=2×3×3×5,那么a和b的最大公约数是(6 ),最小公倍数是(630 )。 7、如果x6 是假分数,x7 是真分数时,x=(6 )。 8、甲数扩大10倍等于乙数,甲、乙的和是22,则甲数是(2 )。 9、三个连续偶数的和是72,这三个偶数是(22 )、(26 )、(24 )。 10、x和y都是自然数,x÷y=3(y≠0),x和y的最大公约数是(y),最小公倍数是(x)。 11、一个数,千位上是最小的质数,百位上是最小的自然数,个位上是最小的合数,百分位上是最大的数字,其余数位上的数字是0,这个数写作(2004.09 ),读作(两千零四点零九 )。 12、三个连续奇数的和是129,其中最大的那个奇数是( 45),将它分解质因数为(5x3x3 )。 13、两个数的最大公约数是1,最小公倍数是323,这两个数是(17 )和(19 ),或(1 )和(323 )。 14、用3、4或7去除都余2的数中,其中最小的是(86 )。 15、分数的单位是18 的最大真分数是(17/18 ),它至少再添上(2 )个这样的分数单位就成了假分数。 16、0.045里面有45个(0.001 )。 17、把一根5米长的铁丝平均分成8段,每段的长度是这根铁丝的(1/8 ),每段长(5/8 )。 18、分数单位是111 的最大真分数和最小假分数的和是(2 )。 19、a与b是互质数,它们的最大公约数是(1 ),[a、b]=(ab )。 20、小红有a枝铅笔,每枝铅笔0.2元,那么a枝铅笔共花( 0.2a)元。 21、甲仓存粮的34 和乙仓存粮的23 相等,甲仓:乙仓=( 8):(9 )。已知两仓共存粮360吨,甲仓存粮( )吨,乙仓存粮( )吨。 22、如果7x=8y,那么x:y=(8 ):( 7)。 23、大圆的半径是8厘米,小圆的直径是6厘米,则大圆与小圆的周长比是(8:3 ),小圆与大圆的面积比是(64:9 )。 24、把5克盐放入50克水中,盐和盐水的比是(1:11 )。 25、甲、乙二人各有若干元,若甲拿出他所有钱的20%给乙,则两人所有的钱正好相等,原来甲、乙二人所有钱的最简整数比是( )。 26、如果x÷30=0.3,那么2x+1=(19 );有三个连续偶数,中间的一个是m,那么最小的偶数是( m-2)。 27、采用24时记时法,下午3时就是(15 )时,夜里11时就是(23 )时,夜里12时是(24 )时,也就是第二天的(0 )时。 28、某商店每天9:00-18:00营业,全天营业(9 )小时。 29、15米40厘米=(15.4 )米=(1540 )厘米 6400毫升=(6.4 )升=(6.4 )立方分米 5.4平方千米=(540 )公顷=(5400000 )平方米 3小时45分=(3.75 )小时 834 立方米=(834000 )立方分米 1立方米50立方分米=(1.05 )立方米 3吨500千克=(3500 )千克 1.5升=(1500 )毫升=(1500 )立方厘米 3.25千米=(3)千米(250)米 0.65米=(6)分米(5 )厘米 30、一个圆柱的体积是60立方厘米,与它等底等高的圆锥体的体积是( 20)立方厘米。41、在一个正方形里画一个最大的圆,这个圆的周长是这个正方形的(π/4),这个圆的面积是正方形的(π/4)。
42、大圆半径是小圆半径的2倍,大
比小
多12平方米,小
是( 4 )平方米。
43、一个
和它等底等高的
的体积相等,
的高是12厘米,
的高是(36)厘米。
44、A是B的65%,A:B=( 13 ):( 20 )。
45、在
是1:12500000的地图上,量得两城市间的距离是8厘米,如果画在
是1:8000000的地图上,图上距离是( 12.5 )厘米。
46、在一个比例里,两个外项为互倒数,其中一个内项是617 ,另一个内项是( 1/617 )。
47、甲、乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是4:5,甲与乙面积之比是( 243:250 )。
48、甲、乙两车货共100吨,其中甲车的14 与乙车的16 相等,甲车运货(40 )吨,乙车运货( 60)吨。
49、352003 的分子和分母同时加上( 949 )后,分数值是13 。
50、一辆汽车从甲地开往乙地用了5小时,返回时速度提高了20%,这样少用了(5/6)小时。
51、把一个棱长3分米的正方体切削成一个最大的
,它的体积是(28.26)立方分米。
52、某班级一次考试的平均分数是70分,其中34 的同学及格,他们的平均分是80分,不及格同学的平均分是( 60 )分。
53、一个
和一个圆锥体的底面半径相等,它们的高的比是5:6,它们的体积比是(5:2)
54、两个体积相等,高也相等的圆柱和圆锥,它们底面积的比是(1:3)。
55、已知两个
的
与最小公倍数的和是143,那么这两个
是( 33 )和( 44 )。或者是26和65
亲,不是我不想帮你忙,实在是太多了
❺ 小学六年级下册数学练习题。
切成两半后,它的底面周长的组成部分为直径,和一个半圆。
设底面直径为X,所以,0.5*3.14*X+X=20.56
可以得出X=8cm,那么,底面半径为4
半圆柱此时的表面积组成部分为半个圆柱的表面积和一个正方形面积。
所以此时,先求半个圆柱的表面积,即,4*4*3.14(上,下两个半圆的面积和)+(3.14*8*0.5)*5(侧面正形的面积)=36*3.14=113.04
正方形面积为底面直径乘以高,即,8*5=40
所以113.04+40=153.04,就是所要的结果。