小学数学毕业总复习试卷——数的整除
一、填空题
1、24和8,( )是( )的约数,( )是( )的倍数。
2、在1、2、3、9、24、41和51中,奇数是( ),偶数是( ),质数是( ),合数是( ),( )是奇数但不是质数,( )是偶数但不是合数。
3、一个数的最小倍数是12,这个数有( )个约数。
4、21的所有约数是( ),21的全部质因数有( )
5、一个合数的质因数是10以内所有的质数,这个合数是( )。
6、a=2×2×5 ,b=2×3×3,a、b两数的最大公约数是( ),最小公倍数是( )。
7、a与b是互质数,它们的最大公约数是( ),它们的最小公倍数是( )。
8、20以内,既是偶数又是质数的数是( ),是奇数但不是质数的数是( )。
9、把171分解质因数是( )。
二、判断(对的打“√”,错的打“×”)
1、任何自然数都有两个约数。( )
2、互质的两个数没有公约数。( )
3、所有的质数都是奇数。( )
4、一个自然数不是奇数就是偶数。( )
5、因为21?=3,所以21是倍数,7是约数。( )
6、质数可能是奇数也可能是偶数。( )
7、因为60=3??,所以3、4、5都是60的质因数。( )
8、8能被0.4整除。( )
9、18既是18的约数,又是18的倍数。( )
10、有公约数1的两个数,叫做互质数。( )
11、因为8和13的公约数只有1,所以8和13是互质数。( )
12、所有偶数的公约数是2。( )
三、选择(将正确答案的序号填在括号里)
1、下面各组数中,第一个数能整除第二个数的是( )
(1)0.2和0.24 (2)35和5 (3)5和25
2、下面各组数,一定不能成为互质数的一组是( )
(1)质数与合数 (2)奇数与偶数
(3)质数与质数 (4)偶数与偶数
3、把210分解质因数是( )
(1)210=2×7×3×5×1
(2)210=2×5×21 (3)210=3×5×2×7
4、两个奇数的和( )
(1)是奇数 (2)是偶数 (3)可能是奇数,也可能是偶数
5、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是( )。
(1)4 (2)a (3)b
6、一个合数至少有( )个约数。
(1)1 (2)2 (3)3
7、6是36和48的( )
(1)约数 (2)公约数 (3)最大公约数
8、有4、5、7、8这四个数,能组成( )组互质数。
(1)3 (2)4 (3)5
9、一个正方形的边长是一个奇数,这个正方形的周长一定是( )
(1)质数 (2)奇数 (3)偶数
10、下面各数中能被3整除的数是( )
(1)84 (2)8.4 (3)0.6
11、下列各数中,同时能被2、3和5整除的最小数是( )
(1)100 (2)120 (3)300
12、8和5是( )
(1)互质数 (2)质数 (3)质因数
13、已知a能整除23,那么a是( )
(1)46 (2)23 (3)1或23
14、如果用a表示自然数,那么偶数可以表示为( )
(1)a+2 (2)2a (3)a-1 (4)2a-1
15、一个能被9、12、15整除的最小数是( )
(1)3 (2)90 (3)180
能力素质提高
1、甲、乙两数的最大公约数是3,最小公倍数是30,已知甲数是6,乙数是( )。
2、一个数被6、7、8除都余1,这个数最小是( )。
3、有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是( )。
4、某公共汽车始发站,1路车每5分钟发车一次,2路车每10分钟发车一次,3路车每12分钟发车一次。这三路汽车同时发车后,至少再经过( )分钟又同时发车?
渗透拓展创新
1、五1班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。问上体育课的同学最少多少名?
2、小红在操场周围种树,开始时每隔3米种一棵,种到9棵后,发现树苗不够,于是决定重种,改为每隔4米一棵,这时重种时,不必再拔掉的树有多少棵? 小学数学毕业总复习试卷——四则运算和四则混合运算
代数初步知识
一、填空题
用含有字母的式字表示下面的数量。
1、图书馆原有书x本,又买来240本。图书馆现在有图书( )本。
2、每个方格本x元,小明买了6本,应付款( )元。
3、苹果的重量是a千克,梨的重量是苹果的3倍,那么,3a表示( )。
4、甲数减去乙数,差是8,甲数是a,乙数是( )。
5、边长为b厘米的正方形的周长是( )厘米,面积是( )厘米。
6、一列火车每小时行78.5千米,x小时行( )千米。
7、说出每个式子所表示的意义。
(1)某班同学每天做数学题a道,7a表示 。
(2)四年级同学订《中国少年报》120份,比五年级多订x份,120-x表示 。每份《中国少年报》a 元,120a表示 ,(120- x)a表示 。
(3)一个正方形的边长a厘米,4a表示 ,a2表示 。
(4)张老师买了3个排球,每个排球x元,付给售货员245元,245 -3x表示
8、0.9∶0.6=9∶( )
9、如果y=5x,那么x和y成( )比例。
10把1/2∶3/4化成最简单的整数比是( )。
11、甲数是乙数的5倍,甲数与乙数的比是( )。
12、一个比的比值是3/4,它的前项是12,后项是( )。
13、如果7x=8y,那么x∶y=( )∶( )
14、在比例尺是1∶5000000的地图上,量的甲乙两地的距离是8厘米,甲乙两地的实际距离是( )千米。
15、1/7∶0.04化成最简整数比是( )。
16、大圆的半径与小圆半径的比是3∶1,则大圆的面积是小圆的面积的( )倍。
二、判断(对的打“√”,错的打“×”)
1、3+4x=23是方程。( )
2、含有未知数的式子叫做方程。( )
3、a2=2a。( )
4、c+c=2c。( )
5、3千克西红柿a元,求1千克西红柿多少元的算式是a?。( )
6、比例尺一定,图上距离和实际距离成正比例。( )
7、a是b的5/7,数a和数b成正比例。( )
8、在比例里,如果两个内项的乘积是1,那么,组成比例外项的两个数一定互为倒数。( )
9、如果4a=3b,那么a∶b=3∶4 。( )
10、圆的周长一定,直径和圆周率成反比例。( )
三、选择题(将正确答案的序号填在括号里)
1、下列各式中,( )是方程。
(1)4x+5 (2)5?=15? (3)30+2x=80
2、4x+8错写成4(x+8)结果比原来( )
(1)多4 (2)少4 (3)多24 (4)小6
3、x=25是( )方程的解。
(1)100- x=85
(3)25+3x=90
4、把1.2吨∶300千克化成最简整数比是( )
(1)1∶250 (2)1200∶300
(3)4∶1 (4)4
5、把5克盐放入50克水中,盐和水的比是( )。
(1)1∶9 (2)1∶8 (3)1∶10
(4)1∶11
6、圆的半径与面积( )。
(1)成正比例 (2)成反比例 (3)不成比例
7、在一幅地图上,甲、乙两地之间的距离是3厘米,甲、乙两地的实际距离是150千米。这幅地图的比例尺是( )
(1)1∶50 (2)1∶50000 (3)1∶500000
8、在比例尺是1∶100000的地图上,量得甲、乙两地的距离是3厘米。甲、乙两地的实际距离是( )。
(1)300千米 (2)30千米 (3)3千米 (4)0.3千米
四、解比例
1、1.25∶0.25=x∶1.6
2、3/4∶x=3∶12
五、列出方程,并求出方程的解。
1、54减去某数的4倍等于6,求某数。
2、一个数的3/5加上16的和是28,求这个数。
六、解答应用题
1、某实验小学男女教师人数的比是2∶5,女教师有35人,男教师有多少人?
2、配制一种农药,其中药与水的比为1∶150。
①要配制这种农药755千克,需要药和水各多少千克?
②有药3千克,能配制这种农药多少千克?
③如果有水525千克,要配制这种农药,需要放进多少千克的药?
3、童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4∶5分给小班和中班,小班和中班各分到多少本?
4、两个车间共有150人,如果从一车间调出50人,这时一车间人数是二车间的2/3,二车间原有多少人?
能力素质提高
1、一套课桌椅的价钱是105元,其中椅子的价钱是课桌的5/7。椅子的价钱是多少元?(用不同的知识解答)
2、枫叶服装厂接到生产一批衬衫的任务,前5天生产600件,完成了任务的40%。照这样计算,完成这项任务一共需要多少天?(用不同的知识解答)
3、一架飞机所带的燃料最多可以用6小时,飞机去时顺风,每小时可以飞行1500千米,飞回时逆风,每小时可以飞行1200千米,问这架飞机最多能飞行多少千米就需要往回飞?
渗透拓展创新
1、学校买来8个足球和60根跳绳,共用去274.2元。每个足球的价钱比32根跳绳的价钱还多0.7元,每个足球多少元?
2、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点的时侯,将比丙领先多少米?
还有一套
应用题
1、简单应用题、复合应用题
1、下面的列式哪一个是正确的,请在算式上打勾。
(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?
①2100-240×5÷3 ②(2400-240)÷3 ③(2100-240×5)÷3
(2)一个装订小组要装订2640本书,3小时装订了240本。照这样计算,剩下的书还需要多少小时能装订完?
①(2640-240)÷240 ②2640÷(240÷3) ③(2640-240)÷(240÷3)
(3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天。照这样计算,再耕13.6公顷棉田,一共要用多少天?
①13.6÷(6.8÷4) ②13.6÷(6.8÷4)+4
③(13.6+6.8)÷(6.8÷4)
(4)一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完。实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路?
①3.2×15÷0.8 ②3.2×15÷(3.2-0.8) ③3.2×15÷(3.2+0.8)
(5)某化工厂采用新技术后,每天用原料14吨。这样,原来7天用的原料,现在可以用10天。这个厂现在比过去每天节约多少吨原料?
①14×7÷10-14 ②14×10÷7-14
③14-14×10÷7 ④14-14×7÷10
2、解答下列应用题。
(1)昌盛农场要收割小麦16.4公顷,已经收割了3天,每天收割1.8公顷。如果从第四天起,每天收割2.2公顷,那么剩下的小麦还需多少天收割完?
(2)食堂运来120吨煤,已经烧了40天,每天烧1.2吨,余下的要30天烧完,平均每天烧多少吨?
(3)某班存放科技书150本,故事书比科技书的2倍少50本,故事书有多少本?
(4)5台粉碎机3小时可粉碎饲料37.5吨。照这样计算,12台同样的粉碎机每小时可粉碎饲料多少吨?
(5)甲乙两汽车从相距600千米的两城市相对开出,甲汽车每小时行65千米,乙汽车每小时行55千米,两车开出几小时后相遇?
(6)甲、乙两艘军舰,从两个港口对开,甲舰每小时行42千米,乙舰每小时行38千米。乙舰开出1小时后,甲舰才开出。再经过4小时两舰相遇。两个港口相距多少千米?
(7)张明家原来每月用水28吨,使用节水龙头后,原来一年用的水,现在可以多用2个月。现在每个月用水多少吨?
(8)有一桶油,已经用去了全部的2/5,桶里还剩48千克。这桶油重多少千克?
(9)某园林厂去年载树4500棵,今年计划比去年多载20%,今年计划载树多少棵?
能力素质提高
1、黄河号货轮从甲港开往乙港,已经航行了85千米,正好航行了甲乙两港航道的5/7。这只货轮离乙港还有多少千米?
2、铺路队铺一条路,每天铺2.5千米,7天铺好全长的5/8。这条路全长多少千米?
渗透拓展创新
1、五年级参加数学竞赛,女生有12人,相当于男生参赛人数的2/3。比赛结果,获奖人数占参赛人数的70%,获奖的有多少人?
2、李阿姨想买两袋米(每袋35.4元)、14.8元的肉、6.7元的蔬菜和12.8元的鱼。李阿姨带了100元,够吗?
智能趣题欣赏
小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
2、列方程解应用题和用比例知识解应用题
1、找出下面数量间的相等关系。
(1)某班男生人数比女生人数多7人。
(2)篮球的个数是足球个数的4倍。
(3)梨树比苹果树的3倍多15棵。
(4)买3支钢笔比买5支圆珠笔多花1.5元。
(5)两根同样长的铁丝,一根围成正方形,一根围成圆。
2、列方程解答下列应用题。
(1)一种收音机每台售价今年比去年降低25%,今年每台售价36元,去年每台售价多少元?
(2)两地相距120千米,甲、乙两人骑自行车同时从两地相对出发,甲车每小时行14千米,经过4小时后与乙车相遇,乙车每小时行多少千米?
(3)学校书画节的展品共有800件。其中美术展品与书法展品的比是5∶3,两种展品各有多少件?
(4)甲、乙两城市间的实际距离是120千米,在比例尺1∶4000000的地图上,这两个城市间的图上距离是多少?
(5)在比例尺是1∶4000000的中国地图上,量得北京到韶山的距离是35厘米。北京到韶山的实际距离是多少千米?
(6)一台织布机4小时可以织布24米,照这样计算,要织布54米,需要几小时?(用比例解)
(7)王刚从家去学校,每分走60米,15分可以走到学校。如果每分走75米,几分可以走到学校?(用比例解)
(8)有两桶油,甲桶油的重量是乙桶油的1.2倍,如果再往乙桶里倒入5千克油,两桶油就一样重了。原来两桶油各有多少千克?
能力素质提高
1、修一条路,原计划15天完成,实际每天修300米,结果提前3天完成,原计划每天修多少米?
2、一辆汽车油箱里储油102升,行使了56千米正好耗油8升。照这样计算,剩下的油还可以行使多少千米?
3、某人步行4小时走了22.4千米,照这样的速度,如果再走3小时,一共可以走多少千米?(用比例解)
4、童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4∶5分给小班和中班,小班和中班各分到多少本?
6、一套课桌椅的价钱是105元,其中椅子的价钱是课桌的5/7。椅子的价钱是多少元?(用不同的知识解答)
7、枫叶服装厂接到生产一批衬衫的任务,前5天生产600件,完成了任务的40%。照这样计算,完成这项任务一共需要多少天?(用不同的知识解答)
渗透拓展创新
1、某车间原有锌和铜共84千克,现在要把锌和铜按1∶2熔铸成一种合金,需要添加12千克铜。原有铜多少千克?
2、一个长方体的模型,所有棱长的和是72分米,长、宽、高的比是4∶3∶2,这个长方体模型的体积是多少立方分米?
智能趣题欣赏
小明读一本书,上午读了一部分,这时读的页数与未读页数的比是1∶9;下午比上午多读6页,这时已读的页数与未读的页数的比变成了1∶3。这本书共多少页?