Ⅰ 小学五年级下册数学题(有答案的)
你好,应用题对孩子综合能力要求比较高:
1、首先要求孩子要能读懂题意,阅读理解能力必须要培养;
2、理解题意还要能将公式定理、数字和题意结合,做出列式解答;
3、解答过程中,还要要求计算不出错,对孩子计算能力也是种考验。
所以,如果孩子应用题做得不好,建议参考这几点,对照孩子哪里有不足,加强练习即可。
Ⅱ 小学五年级数学学习重点有哪些
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
Ⅲ 小学五年级数学解决问题
1、 一条水渠共6400米,前三个月平均每月修1200米,余下的要在2个月内完成,平均每月至少要完成多少米?
2、 王老师和李老师买同样的图书。王老师花了256元买到8本,李老师花了192元,王老师比李老师多买了多少本图书?
3、 农具厂原计划每月生产农具400件,技术革新后,9个月生产量就超过全年计划780件,现在平均每月生产多少件?
4、 苹果有50筐,比梨的筐数的2倍少2筐。苹果和梨共有多少筐?
5、 一批布原计划做服装1800套,由于每套节约用布0.2米,结果多做了100套,现在每套用布多少米?
6、 甲乙两位工人共同加工一批零件,20天完成了任务。已知甲每天比乙多做3个,而乙在中途请假5天,于是乙所完成的零件数恰好是甲的一半,求这批零件的总数是多少个?
7、 某机器厂计划30天里完成10800台机床,由于改进技术,每天比原计划多制造180台,这样可以提前几天完成任务?
8、 有甲乙两袋大米,甲袋大米的重量是乙袋的1.2倍,如果往乙袋中再加入5千克,两袋大米就一样多了。原来甲乙两袋大米各有多少千克?
9、 一桶油连桶重45千克,倒出一半后连桶还剩23千克。如果这种油每千克卖4.5元,一桶油可以卖多少元?
10、小麦每袋60千克,大米每袋90千克,今共运小麦、大米280袋,
只知小麦的总重量大米的总重量多1800千克。求小麦、大米各
几袋?
Ⅳ 生活中的数学问题 小学五年级
抽屉原理和六人集会问题
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
......
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
各个超市里看一下商品价格 特别是原价、特价、买X送Y....进行对比(计算)得到答案,买最便宜的= =
常见的,X克的要多少多少钱,Y克要多少多少钱,Z克(大包装)送小产品优惠多少....等等
路边(电视上)都有很多促销活动,还有商家欺骗消费者的"假促销"(看起来价格低了,其实是高了)
Ⅳ 小学五年级数学问题
第一题:
设可以铺X米厚,那么依题意可列方程式如下
5*3.8*X=7.6
解得X=0.4米
第二题:
设钢管原来长X米,可列方程式为
X*(1-5/9)=8
解得X=18米
第三题:
表面积:4*8*4+4*4=144平方厘米=1.44平方分米
体积:4*8*4=128平方厘米=1.28平方分米
Ⅵ 要100道小学数学五年级的解决问题
1:体育用品有90个乒乓球,如果每两个装一盒,能正好装完吗?如果每五个装一盒,能正好装完吗?为什么?
90#2=45盒
90#5=18盒
答:如果每两个装一盒,能正好装完如果每五个装一盒,也能正好装完.因为90能整除五.
2:体育店有57个皮球,每三个装在一个盒子里,能正好装完吗?
57#3+19盒
答:能正好装完.
3:甲,乙两个人打打一份10000字的文件,甲每分打115个字,乙每分钟打135个字,几分钟可以打完?
10000#(115+135)=40分
答:40分钟可以打完.
4:五年级同学植树,13或14人一组都正好分完,五年级参加植树的同学至少有多少人?
13X14=192人
答:五年级参加植树的人至少有192人.
下面几道题目虽然属于应用题,但跟方程有关.我都是用方程解答的.
5:两辆汽车从一个地方相背而行.一车每小时行31千米,一车每小时行44千米.经过多少分钟后两车相距300千米?
方程:
解:两车X时后相遇.
31X+44X=300
75X=300
X=4
4小时=240分钟
答:经过240分钟后两车相距300千米.
6:两个工程队要共同挖通一条长119米的隧道,两队从两头分别施工.甲队每天挖4米,乙队每天挖3米,经过多少天能把隧道挖通?
解:设X天后挖通隧道
3X+4X=119
7X=119
X=17
答:经过17天挖通隧道.
7:学校合唱队和舞蹈队共有140人,合唱队的人数是舞蹈队的6倍,舞蹈队有多少人?
解:设舞蹈队有X人
6X+X=140
7X=140
X=20人
答:舞蹈队有20人.
从这里开始不是方程题了.
8:兄弟两个人同时从家里到体育馆,路长1300米.哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?
1300X2=2600米 2600#(180+80)
=2600#260
=10分
答:这时哥哥走了10分钟.
9::六一儿童节,王老师买了360块饼干,480块糖,400个水果,制作精美小礼包,分给小朋友作为礼物,至多可做几个小礼包?
360+480+400=1240个
答:至多可做1240个小礼包.
10:淘气买了40个气球,请同学来家比吹气球.为了能把气球平分,淘气应该请几个同学来比吹气球?淘气不参加.
40#2=20人 40#4=10人 40#5=8人
40#8=5人 40#@0=4人 40#20=2人
答:请同学的方法有6种,分别是:20人,10人,5人,8人,4人,2人.
11:一块梯形的玉米地,上底15米,下底24米,高18米.每平方米平均种玉米9株,这块地一共可种多少株玉米?
(15+24)X18#2=351平方米
351X9=3195株
答:这块地可种玉米3159株.
12:某班学生人数在100人以内,列队时,每排5人,4人,3人都刚好多一人,这班有多少人?
5X4X3=60人 60+1=61人
答:这班有61人.
13:王月有一盒巧克力糖,每次7粒,5粒,3粒的数都余1粒,这盒巧克力糖至少有多少粒?
7X5X3=105粒 105+1=106粒
答:这盒巧克力糖至少有106粒.
14:晨光小区有一段长15米,宽1.2米的长方形甬道要铺方砖.设计师准备了边长是30厘米的方砖,请你算一算:需要几块这样的方砖?如果每块方砖3元,那么铺这段甬道需要多少元?
15米=150分米 1.2米=12分米 30厘米=3分米
150X12=1800平方分米 3X3=9平方分米
1800#9=200块 200X3=600元
答:需要200块这样的方砖,需要600元.
15:有两块面积相等的平行四边形实验田,一块底边长70米,高45米,另一块底边长90米,高是多少米?
70X45=3150平方米 3150#90=35米
答:高是35米.
16:一批钢管叠成一堆,最下层有10根,每上1层少放1根,最上1层放了5根.这批钢管有多少根?
10-5+1=6层 (10+5)X6#2
=15X6#2
=90#2
=45根
答:这批钢管有45根.
1.东高村要修建一个长方体的蓄水池,计划能蓄水720吨.已知水池的长是18米,宽是8米,深至少是多少米?(1立方米的水重1吨.)(用方程解答)
2.一个长方体游泳池,长50米,宽25米,池内原来水深1.2米.如果用水泵向外排水,每分钟排水2.5立方米,需要多少小时排完?
3.一个长方体的汽油桶,底面积是16平方分米,高是6分米,如果1升汽油中0.74千克,这个有同可以装多少千克汽油?
4.用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米,长和宽都大于高.它的长和宽各是多少厘米?
第一题:
深至少是X米,
18*8X=720
144X=720
X=5
答:深至少是5米.
第二题:
50*25*1.2=1500(立方米)
1500/25=600(分钟)
600分钟=10小时
答:需要10小时.
第三题:
16*6=96立方米=96升
96*0.74=71.04千克
答:这个油桶可以装71.04千克.
第四题:
1分米=10厘米
2100/10=210(厘米)
210/70=3(厘米)或者 210/30=70(厘米)
答:长为70厘米;宽为3厘米;或者长为30;宽为7厘米.
第5题:
有一个正方体,边长为2厘米,求这个正方体的表面积?
答案:2*2*6=24(平方厘米)
第6题:
有一个长方体,长2厘米,高2厘米,宽1厘米,求表面积?
答案:(2*2+2*1+2*1)*2=16(平方厘米)
第7题:一块长方体的木板,长2米,宽5米,厚8米,它的表面积是多少平方米?体积是多少立方米?
答案:表面积:(2*5+2*8+5*8)*2=132(平方米)
体积:2*5*8=80(立方米)
第8道:一个正方体油桶的棱长0.8米,它的容积是多少升?做这个油桶至收用铁皮多少平方分米?
0.8*0.8*0.8=0.512(平方米)=512(升)
0.8*0.8*6=3.084(平方米)=348(平方分米)
第9道:有三根木棒,分别长12厘米,44厘米,56厘米.要把他们都截成同样长的小棒,不许剩余,每根小棒最长能有多少厘米?
答案:这里求的是12,44,56,的最大的公约数!你自己算吧!
第10题:一个无盖的正方体鱼缸,棱长50厘米,至少需要多大玻璃?
答案:50*50*5=12500(平方厘米)
第11题:一包糖果,分8个人或10个人,都能正好分完,这包糖果至少有多少块?
答案:这里是求8和10的最小公倍数.
第12题:有一箱牛奶,分5个人或分7个人,都剩一瓶牛奶,这箱牛奶至少有多少瓶?
答案:这里求的是5和7的最小公倍数在+上1
第13题:长方形地长40米、宽45米,和另一块底为75米的平行四边形的面积相等,这块平行四边形地的高多少米?
答案:40*45=1800(平方米)
1800/75=24(米)
第14题:三角形的面积是3.4平方米,和它等地等高的平行四边形面积是多少?
答案:3.4*2=6.8(平方米)
第15题:一个长方体水池长8.5米,宽4米,深1.5米,这个水池占底面积是多少平方米?
答案:8.5*4=34(平方米)
第16题:一个长方体木箱,长12分米,宽8分米,高6.5分米,如果在它的围标涂上油漆,涂油漆的面积有多少平方分米?
答案:12*8+(12*6.5+8*6.5)*2=356(平方分米)
第17题:梯形的上底是5米,下底12米,高8米,它的面积是多少?
答案:(5+12)*8=68(平方米)
第18题:做长方体的箱子,长0.8米,宽.6米,高0.4米.做这个箱子至少要多少材料?
答案:(0.9*0.6+0.6*0.4+0.9*0.4)*2=228(平方米)
第19题:正方体纸盒棱长0.6米,做一个纸盒至少要用多少材料?
答案:0.6*0.6*6=2.16(平方米)
第20题:小明里学校有1000米,他每分钟走100米,要多少小时才能回到学校?
答案:1000/100=10(分钟)=1/6小时21. 两个数的最大公因数是30,他们的最小公倍数是180,已知其中一个数为180,求另一数?
答案:30
22.从运动场的一端到另一端全长96米,原来从一端起到另一端每隔4米插一面小红旗,现在要改成每隔6米插一面小红旗,求不拔出来的小红旗有多少面?
答案:因为运动场全长96 每隔4米 有1面红旗 可知一共有96除4=24面 又因为改成每6米一面 3成4=12 2成6=12 所以每四面红旗拔掉2根24除2=12面
23.有25个桃子,75个橘子,分给若干名小朋友,要求每人分得的桃子,橘子数相等,那么最多可非给多少个小朋友?每个小朋友分得桃子多少个?橘子多少个?
答案:(25,75)=25个(25是25和75的最大公约数)
25/25=1个
75/25=3个
最多可分给25个小朋友,每个小朋友分得桃子1个,橘子3个.
24.兰兰的父母在外地工作,她住在奶奶家.妈妈每6天开看她一次,爸爸路远,每9天才能来看她一次.请你想一想,至少多少天爸爸,妈妈能同时来看她?两个月内他们全家能团聚几次?
答案:(6,9)=18天(18是6和9的最小公倍数)
60/18=3次.6天
至少18天爸爸,妈妈能同时来看她,两个月内他们全家能团聚3次
25.路车每6分钟发一次车,15路每8分钟发一次车,9路车每12分钟发一次车,现在三个路的公共汽车同时从起点出发,至少在过多少分钟三个路的车又同时发车.
答案:6=2*3
8=2*2*2
12=2*3*2
3*2*2*2=24
26.长72分米,宽48分米为最大公因数是24分米裁成面积最大的正方形桌布边长为2米4分米
答案:(72÷24)×(48÷24)=3×2=6
可以裁6块.
27.阿姨今天给月季和君子兰同时浇了水,月季每4天浇一次水,君子兰每6天浇一次水 ,至少多少天以后给这两种花同时浇水?
答案;求4和6的最小公倍数,等于24天
28. 有饼30块,橙36个,分给若干个儿童,每人所得的相等,最多可分给儿童多少人?
答案:求30和36的最大公约数,等于6
29.上米50公斤,中米60公斤,下米90公斤,分别装成重量相等的若干袋,各种米恰好装完,每袋的重量最多是多少公斤?
答案:求50.60和90的最大公约数,等于10
30.用24朵红花.36朵黄花和48朵紫花作成花束,要使花束里有同样多的花.这些花最多能做多少花束?
答案:求24.36和48的最大公约数,等于12
31.有一个长方体,宽是高的3倍,宽与高的长度和等于长.现将它横切一刀,再竖切一刀,得到了4个小长方体,表面积增加了200平方厘米.原来长方体的体积是多少?
答案:设高为a,宽为3a,长为4a
那么横切之后,表面积增加2*3a*4a
竖切之后,表面积增加2*a*3a
24a^2+6a^2=200
a=(20/3)^0.5
体积v=12a^3=160/3*(15)^0.5
32.一只无盖的长方形鱼缸,长 0.4米,宽 0.25米,深 0.3米,做这只鱼缸至少要用玻璃多少平方米?
答案:0.4×0.25+2×0.25×0.3+0.4×0.3
=0.1+0.15+0.24
=0.49㎡
33.用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
答案:36÷12=3㎝
6×3×3
=54平方厘米
Ⅶ 小学五年级数学思考题50题。。 急求。
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
Ⅷ 小学五年级趣味数学题及答案(30道)
1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
答:把两根香同时点起来,第一支香两头点着,另一支香只烧一头,等第一支香烧完的同时(这是烧完总长度的3/4),把第二支香另一头点燃,另一头从燃起到熄灭的时间就是15分!
2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄.请问三个女儿的年龄分别是多少?为什么?
答:三女的年龄应该是2、2、9.因为只有一个孩子黑头发,即只有她长大了,其他两个还是幼年时期即小于3岁,头发为淡色.再结合经理的年龄应该至少大于25.
3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29.可是当初他们三个人一共付出$30那么还有$1呢?
答:一共付出的30元包括27元(25元给老板+小弟贪污2元)和每人退回1元(共3元),拿27和2元相加纯属混淆视听.
4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着.两位盲人不小心将八对袜了混在一起.他们每人怎样才能取回黑袜和白袜各两对呢?
答:每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对.
5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶.如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
答:把鸟的飞行距离换算成时间计算.设洛杉矶和和纽约之间的距离为a,两辆火车相遇的时间为a/(15+20)=a/25,鸟的飞行速度为30,则鸟的飞行距离为a/25*30=6/5a.
6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
答:一个罐子放一个红球,另一个罐子放49个红球和50个蓝球,概率接近75%.
这是所能达到的最大概率了.
实际上,只要一个罐子放1.对于每个戴黑的人来说,他能看见N-1顶黑帽 ,并由此假定自己为 白.但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了.所以第N次关灯就有N个人打自己.
12、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
答:无论内外,小圆转两圈.小圆、大圆经历的距离相等.
13、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
答:39瓶,从第2瓶开始,相当于1元买2瓶.