① 北师大版小学六年级第二单元比例知识点归纳
比例的认识
1.比例的含义:
表示两个比相等的式子。组成比例的四个数,叫做比例的项。两端的两项叫做外项。中间的两项叫做外项。
2.组比例的方法:
(1)把比值相等的两个比组成比例。
例:写出两个比值是4的比,并组成比例。
12:3=4, 40:10=4,所以12:3=40:10
(2)已知一个比。
方法:先写出与已知比的比值相等的比,再把两个比值相等的比组成比例。
例:根据2.8:10组成比例。先计算2.8:10=0.28,再写出一个比值是0.28的比0.56:2,组成比例2.8:10=0.56:2。
(3)已知四个数组比例。
方法:先分别选两个数组成比,再求两个比的比值,看两个比的比值是否相等,比值相等就把这两个比组成比例。以这两个比为基础,调换内项、外项的位置,从而组成新的比例。
例:用3、4、9和12四个数组比例。
3:4=3/4, 9:12=3/4,所以3:4=9:12。以3:4=9:12为基础,调换内项、外项的位置,可以组成多个新的比例。
(4)已知相等的两个乘法算式组比例。
方法:可以把积相等的两个乘法算式分别看做内项×内项和外项×外项,再分别把两组乘法算式中的因数填入相应的内、外项当中。
例:根据12×5=6×10组比例。
内项×内项=外项×外项 12 ×5 = 6 ×10 组成比例:
以6:12=5:10为基础,调换内项、外项的位置,同样可以组成多个新的比例。
(5)判断两个比是否能组成比例的方法。
方法:根据比例的含义进行判断:表示两个比相等的式子叫做比例。看两个比的是否相等,要看这两个比的比值是否相等。两个比的比值相等,说明这两个比相等,两个相等的比能组成比例。
例:判断0.4:7和2:35能不能组成比例。 因为0.4:7的比值是2/35,2:35的比值是2/35,0.4:7和2:35的比值相等,所以它们可以组成比例。
02
比例的应用
1.解比例
根据比例的基本性质解比例。先把比例写成两个外项的积的等于两个内项的积的形式(即方程),再通过方程求未知项的值。
如x:6=2:8,可以先写成8X=2×6 ,再解方程。
2.比例应用
例题:40千克小麦能磨面粉32千克,照这样计算,70千克小麦能磨面粉多少千克?
解析:首先本题面粉占小麦的比率是不变的,所以能列出方程:32:40=x:70。
03
比例尺
1.比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。
比例尺=图上距离∶实际距离
转化:
图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
2.比例尺的分类:
比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
(1)数值比例尺:用数字的比例式或分数式表示比例尺的大小。
如:地图上1厘米表示实际距离500千米,可写成1:50 000 000或写成1/50000000。
(2)线段比例尺:在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
(3)根据作用不同,比例尺可以分为缩小比例尺和放大比例尺。
3.比例尺的应用
(1)已知比例尺和图上距离求实际距离
可以根据比例尺的意义用图上距离直接乘(除以)缩小(放大)的倍数。也可以用除法计算,即图上距离÷比例尺=实际距离。一定注意结果要换算成合适的单位。
(2)前项为1的比例尺即缩小比例尺,就是把实际距离缩小到原来的几分之一画在图上,所以求图上距离可以用实际距离除以缩小的倍数。也可以直接用实际距离乘比例尺。一定注意单位的换算。
(3)求比例尺就是求图上距离和实际距离的比,单位不同要换算成统一单位后再进行计算。
(4)根据比例尺画图时,要先根据实际距离与纸张的大小确定出平面图的比例尺,再根据 比例尺求出图上距离,根据图上距离即可以画出相应的平面图,最后再在平面图上标明比例尺就可以了。
04
图形的放大和缩小
1.按一定的比例把图形放大或缩小,是把图形的各边放大或缩小。图中的各边与实际中相对应的各边的比相等。这样放大或缩小后的图形与原图形的形状一样,不会改变。
2.在方格纸上按一定的比将物体或图形放大或缩小的步骤:
一看,看原图形每边占几格;
二算,按已知比计算出放大图或缩小图的每边各占几格;
三画,按计算出的边长画出原图形的放大图或缩小图。
② 六年级北师大版数学上册第一单元知识要点归纳
圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。圆心和半径的作回用:圆心决定圆的答位置,半径决定圆的大小
圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴
同一圆中直径是半径的2倍
圆的周长指围成圆的曲线的长。直径大的圆周长就大,直径小的圆周长就小
圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14
圆的周长:C=2πr或C=πd求半径:r=C/2π求直径:d=C/π
圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 。面积计算公式:π*r的平方
圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方) (R是大圆半径,r是小圆半径)
③ 小学数学北师大版六年级下册知识点总结
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换版算:
1平方权千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算: 1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月 大月(31天)
有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
④ 小学都有哪些数学知识点。(北师大版 六年级上册)要详细的!
北师大版六年级上册数学的知识点教学目标(供参考)
目
标
内容
知识技能
数学素养
数与代数
数的运算
能计算实际问题中“增加百分之几”或“减少百分之几”。
体会百分数与现实生活的密切联系,提高运用数学解决实际问题的能力;通过观察、分析、归纳、类比与猜测、验证,发展初步的合情推理,体验数学问题的探索性和挑战性。
能解决“比一个数增加百分之几的数”或“比一个数减少百分之几的数”。
能用方程解决有关百分数的逆解题。
解决与储蓄有关的实际问题。
比的认识
理解比的意义及其与除法、分数的关系,会求比值。
运用商不变的性质或分数的基本性质化简比。
能运用比的意义解决按照一定的比进行分配的实际问题。
空间与图形
图形的认识
认识圆、体会圆的特征及圆心和半径的作用,会用圆规画圆。
通过观察、操作、想象等活动,发展空间观念。通过动手拼摆等活动,体会“化曲为直”的数学思想;结合欣赏和设计,发展想象力和创造力;提高学生灵活运用各种策略解决问题的能力。
用圆的知识解释生活中的简单现象。
掌握圆的周长和面积的计算方法。
利用圆规设计简单的图案。
运用圆的周长和面积的知识解决实际问题(包括复杂的组合图形周长和面积的计算)。
图形与变换
能有条理的表达一个简单图形经过平移、旋转或轴对称制作复杂图形的过程。
通过欣赏和设计图案,使学生感受图形世界的神奇,发展学生的空间观念。
能灵活运用平移、旋转和轴对称在方格纸上设计图案
图形与位置
能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体)的形状,并画出草图。
通过观察物体,发现规律,不断发展学生的空间观念。
能根据观察到的正面、侧面、上面的平面图形还原立体图形。
能根据给定的两个方向观察到的平面图形的形状确定搭成的立体图形所需小立方体的数量范围。
利用观察范围随观察点、观察角度的变化而改变的规律解释生活中的一些现象。
统计与概率
数据统计
认识复式条形统计图和复式折线统计图,了解他们的特点。
经历收集、整理和分析数据的过程,逐步形成统计观念。
能根据需要选择复式条形统计图和复式折线统计图有效地表示数据。
能读懂简单的复式统计图,根据统计结果做出简单的判断和预测。
综合实践
数学与体育
用列表、画图的方式寻找解决问题的规律。
体会数学知识在体育、生活中的应用,发展数学应用意识,体会图表的关系,学会分析量与量之间的关系,提高观察分析能力,增强应用意识。
运用圆的有关知识计算所走弯道距离。
利用数学知识解决营养配餐问题。
生活中的数
了解收集数据的常用方法。
通过对现实生活中的数据的处理,发展数感与处理数据的能力;体会数在表达、交流和传递信息中的作用。
体会大数估计的策略和方法,进行简单的估算。
了解数字的用途,知道一个“编号”中某些数字所代表的意义。
进一步体会负数的意义。
会画折线统计图描述事物的变化情况。
看图找关系
从图中分析出某些量之间的关系,并用语言表达。
发展有条理思考和表达的能力。
体会图刻画事物或数之间的关系,能分析一些简单的关系。
第一单元:圆
圆的认识(一)
1.圆中心的一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.
2.圆有无数条半径,有无数条直径.
3.圆心决定圆的位置,半径决定圆的大小.
圆的认识(二)
4.把圆对折,再对折就能找到圆心.
5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
7.圆一周的长度就是圆的周长.
8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大.面积相等时,圆的周长最小.
第二单元:百分数的应用
百分数的应用(四)
14.利息=本金乘利率乘时间
第四单元:比的认识
15.两个数相除,又叫做这两个数的比.比的后项不能为0.16.比的前项和后项同时乘上或除以一个相同的数(0除外).比值不变,这叫做比的基本性质.