Ⅰ 求人教版小学1-6年级数学,课本和教师用书(电子版,免费的)
有电子版但是不免费,十二元一套
Ⅱ 小学人教版数学1-6年级所有的概念 ,公式。
小学人教版数学1-6年级所有的概念 ,公式。
推荐内容
小学人教版数学1-6年级所有的概念 ,公式。
小学人教版数学1-6年级所有的概念 ,公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径 ?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体积=底面积×高 V=Sh 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高
Ⅲ 求小学6年级数学书人教版上下册电子书。
第一课是分数乘法。第二个是位置与方向第三个是分数除法第四个是比第五个圆。第六个是百分数。,第七课是扇形统计图,第八个是数学广角
还有问题私信啊!
Ⅳ 小学六年级的数学学习内容有什么(人教版)
1
负数
2
百分数(三)
※生活与百分数
3
圆柱与圆锥
4
比例
※自行车里的数学
5
数学广角——鸽巢问题
6
整理和复习
(1)数与代数
(2)图形与几何
(3)统计与概率
(4)数学思考
(5)综合与实践
Ⅳ 人教版小学六年级数学上册概念都是有哪些
人教版小学六年级数学上册概念如下:
第一单元位置:
1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。
2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。
3、平移方法:左右平移,列变行不变;上下平移,行变列不变。
第二单元分数乘法:
1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。
4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5、乘积是1的两个数叫互为倒数。
6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
7、一个数(0除外)乘以一个真分数,所得的积小于它本身。
8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9、一个数(0除外)乘以一个带分数,所得的积大于它本身。
第三单元分数除法:
1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除以整数(0除外),等于分数乘这个整数的倒数。
3、整数除以分数等于整数乘以这个分数的倒数。
4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、两个数相除又叫做两个数的比。
6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
11、一个数(0除外)除以一个真分数,所得的商大于它本身。
12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
13、一个数(0除外)除以一个带分数,所得的商小于它本身。
第四单元圆
1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。
11、圆的周长公式:C=πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。
13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
16、环形的周长=外圆周长+内圆周长。
17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d或C=πr+2r
18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。
23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
26、只有2条对称轴的图形是:长方形。
27、只有3条对称轴的图形是:等边三角形。
28、只有4条对称轴的图形是:正方形。
29、有无数条对称轴的图形是:圆、圆环。
30、直径所在的直线是圆的对称轴。
第五单元百分数
1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。
6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
7、百分率公式:
合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%
出勤率=出勤人数÷总人数100%
8、应纳税额:缴纳的税款叫应纳税额。
9、应纳税额的计算:应纳税额=各种收入×税率。
10、本金:存入银行的钱叫做本金。
11、利息:取款时银行多支付的钱叫做利息。
12、利率:利息与本金的比值叫做利率。
13、国债利息的计算公式:利息=本金×利率×时间。
13、本息:本金与利息的总和叫做本息。
单位换算:
1、长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面积单位换算
1平方千米=100公顷1公顷10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、体(容)积单位换算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量单位换算:1吨=1000千克1千克=1000克
运算定律:
1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)
3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc
6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)
7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c)
(5)人教数学版小学六年级扩展阅读:
小学六年级数学学习方法
1、抓住课堂
平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。
2、高质量完成作业
不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。
3、勤思考,多提问
对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。
4、总结比较,理清思绪
要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。
要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。
5、有选择地做课外练习
课余时间并不充足,因此在做课外练习时要少而精,多反思
Ⅵ 小学六年级下册的数学公式。小学全部的(人教版)
人教版小学数学
定义定理公式
三角形的面积=底×高÷2。
公式
s=
a×h÷2
正方形的面积=边长×边长
公式
s=
a×a
长方形的面积=长×宽
公式
s=
a×b
平行四边形的面积=底×高
公式
s=
a×h
梯形的面积=(上底+下底)×高÷2
公式
s=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高
公式:v=abh
长方体(或正方体)的体积=底面积×高
公式:v=abh
正方体的体积=棱长×棱长×棱长
公式:v=aaa
圆的周长=直径×π
公式:l=πd=2πr
圆的面积=半径×半径×π
公式:s=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:s=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh
圆锥的体积=1/3底面×积高。公式:v=1/3sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
(2)1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
(3)1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
(4)1吨=1000千克
1千克=
1000克=
1公斤
=
1市斤
(5)1公顷=10000平方米
1亩=666.666平方米
(6)1升=1立方分米=1000毫升
1毫升=1立方厘米
数量关系计算公式方面
1.单价×数量=总价
2.单产量×数量=总产量
3.速度×时间=路程
4.工效×时间=工作总量
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次
数是一次的等式叫做一元一次方程式。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数