导航:首页 > 小学年级 > 小学五年级数学竞赛题

小学五年级数学竞赛题

发布时间:2020-12-06 11:37:59

1. 五年级数学竞赛试卷及答案

第二届华博士小学数学奥林匹克网上竞赛试题及答案
(五年级)
(红色为正确答案)
选择正确的答案:

(1)在下列算式中加一对括号后,算式的最大值是( )。
7 × 9 + 12 ÷ 3 - 2
A 75 B 147 C 89 D 90
(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.
A 500 B 540 C 360 D 480
(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么
甲数是( ).
A 1.75 B 1.47 C 1.45 D 1.95
(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱
少1.1元,顾客应退回的瓶钱是( )元.
A 0.8 B 0.4 C 0.6 D 1.2
(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( )
和( ). A 30和100 B 110和30 C 100和34 D 95和40
(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10
(7)一个两位数除250,余数是37,这样的两位数是( ).
A 17 B38 C 71 D 91
(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.
A 13 B 12 C 14 D 15
(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11
(10)一昼夜钟面上的时针和分针重叠( )次.
A 23 B 12 C 20 D13
(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,
求四月份比原计划超产多少台机器?
A 16 B 8 C 10 D 12
(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?
A 15 B 12 C 75 D 8

(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米
A 9 B 7 C 8 D 6

(14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?
A 48 B 50 C 52 D 58
(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?
A 10 B 100 C 20 D 160

答案:CBCCA
DCACA
BADDB

2. 五年级下册数学竞赛应用题及答案

人教版五年级下册数学应用题竞赛及答案

3. 小学五年级数学奥林匹克竞赛题

增加的面积是一个小正方形(边长2分米)和两个小长方形(宽是2分米,长是原正方形的边长)
则:
20-2*2=16分米——两个长方形面积和
16/2=8分米——一个长方形面积
8/2=4分米——长方形的长(即原正方形的边长)
4*4=16平方分米

4. 小学五年级数学竞赛

凑合点儿……我懒得P图了。

见图,2,3为奇点,即有奇数条线经过它,1,4为偶点。

你上专网搜一下“七属桥问题“就知道,一张图有两个奇点,要一笔画就必须从一个奇点开始,从另一个结束。

(鉴于你的认知,我就用浅显点的可能性解决。不过……你确定这是小学五年级的题目么……)

好了,接下来进入正题。

  1. 3有着五条线与它相连,即从3开始,有五条路可以走,但由于有箭头限制,只有三种行驶方式

  2. 同样的,从2开始行驶,由于箭头,只能向1行驶,有两种方式到1

  3. 从1有两种方式到3

  4. 从3有两种方式到4

  5. 从4有两种方式到2

  6. 那么从3开始,2结束,有3*2*2*2*2=48种方式

  7. 由于这个图形是中心对称的,所以从2到3和从3到2都有48种方式。

  8. 因此一共是96种方式。

5. 小学五年级数学思考题50题。。 急求。

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

6. 育才小学五年级举行数学竞赛,共十道题,每做一道得8分做错一道倒扣5分,张琳最终得分为41分,她做对

鸡兔同笼问题
解法一:算术法
解:假设他10道题全做对了,那么,做错了:
(10×8-41)÷版(8+5)
=39÷13
=3(道)权
做对了:10-3=7(道)
答:略
解法二:方程法
解;设他做对了x道,则做错了10-x道
8x-5(10-x)=41
8x-50+5x=41
13x=41+50
13x=91
x=7
做错了:10-7=3(道)
答:略

7. 阳光小学五年级举行数学竞赛,共10题,做对一题得8分,错一题扣5分,张华最终得41分,他做对多少道题

设张华答对了x道题,那么答错了10-x道题。列出式子8x-5*(10-x)=41
化简为13x=91
x=7
那么张华做对了7道题

8. 小学五年级数学奥赛题及答案

、(1)A、1991+199.1+19.91+1.991=1991+199+19.+1+(0.1+0.91+0.991)=2212.001。
B、1995+1996+1997+1998+1999+2000 +2001+2002+2003+2004=19995。
(2)设想:1、同时参加语文、数学两科竞赛的最多有23人,同时参加语文、英语两科竞赛的最多有5人,只参加英语竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。2、同时参加语文、英语两科竞赛的最多有20人,同时参加语文、数学两科竞赛的最多有8人,只参加数学竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。其它设想也会得出最多有28人的答案。
(3)五个是连续自然数的最小合数为24、25、26、27、28,和最小是130。
(4)火车从上桥到离桥需要(1200+300)÷20=75秒钟。
(5)连续n个偶数之和 应为2+4+6+8+ ……=n×(n+1)
则2+4+6+8+ ……+1000=500×(500+1)=250500。
(6)沿圆形轨道飞行了2×(6400+343)×3.14×10≈ 420000千米.
2、居民区A 。

街道 _____________s_点为奶站________________

。居民区B
3、 如图:中间空出的小正方形边长为5厘米,长方形板的宽为
6厘米,长方形板的面积是66平方厘米。

20米

31.5米
4、如上右图,把三条道路平移至菜地边上,则用于种菜的面积就是长为31.5米,宽为20米的长方形面积,是630平方米。
5、汽船顺中流而下速度为440÷4=110(里),则汽船在静水中的速度为110-45=65(里),汽船从沿岸返回速度为65-25=40(里),从沿岸返回原处需440÷40=11小时。
6、解法1、由题意知每6个和尚要用6个饭碗,3个菜碗,2个汤碗,即用11个碗,则55个碗是11的5倍,共有和尚6×5=30个。解法2、每一个和尚要用一个饭碗、二分之一个菜碗,三分之一个汤碗,即共用116个碗,共有和尚55÷116=30个。
7.解法1、240只羊吃草6天=牧场中原有的和6天新长出的草吃=1只羊吃1440天的草,210只羊吃草8天=牧场中原有的和8天新长出的草吃=1只羊吃1680天的草,两者之差是2天新长出的草=1只羊吃240天的草,1天新长出的草=1只羊吃120天的草;牧场中原有的草=1只羊吃144天的草—6天新长出的草(1只羊吃72天的草)=1只羊吃720天的草,18天要吃掉牧场中原有的+18天新长出的草=1只羊吃720天的草+18×1只羊吃120天的草=1只羊吃2880天的草,要用2880÷18=160只羊。160只羊18天即可把牧场中原有的和新长出的草吃完。解法2、每天新长出的草=120只羊可当天吃完,也就是说不管吃草天数多长,专用120只羊可吃掉每天新长出的草,则18天中要吃掉牧场中原有的草要用的羊数+120只羊(当天吃掉新长出的草)就是答案,
牧场中原有的草=1只羊吃720天的草=40只羊吃18天的草, 要用40+120=160只羊
18天即可把牧场中原有的和新长出的草吃完。解法3、本题也可用三元一次方程组求解。设:牧场中原有的草为a和新长出的草为b,c只羊18天即可把牧场中原有的和新长出的草吃完。则有a+6b=240×6 (1)式; a+8b=210×8 (2)式 a+18b=c×18 (3)式可解出c=160只羊。
8、本月水费=15×0.8+10×0.8×2=28元。
9、要用大树为0.28×20×50000000÷(3.14×10×10×2000)≈446棵=0.004万棵,毁灭0.0004平方公里的森林。使用一次性筷子毁灭森林、污染环境,造成生态灾难。我们应当拒绝使用一次性筷子,保护森林、保护生态环境,建议使用消毒竹筷替代一次性筷子。
10、(1)题中的数据可制成条形、折线、扇形统计图均可;(2)城市垃圾的数量年年增加,说明了我国经济社会高速发展,人民生活水平年年提高;(3)我国每年都有这么多的垃圾 ,1)选择填埋,一次性处理;2)应该变废为宝,建立垃圾综合分检处理厂,分类分检回收利用各种有用的工业材料,制造化肥等,保护生态环境。
11、 (1)图形的面积90平方厘米。
(2) 解1:如图半圆面积减掉三角形面积=2个半片叶面积
=3.5625平方厘米。
5 则四叶阴影面积=
12 8 13.5625×4=14.25平方厘米

10 解2:四叶阴影面积=4个半圆面积减掉正形面积
=39.25—25=14.25平方厘米
12、据题意知:三个班分别为(3个、3个、8个节目)的情况共有3种;(3个、4个、7个节目)的情况共有6种;(3个、5个、6个节目)的情况共有6种;(4个、4个、6个节目)的情况共有3种;(4个、5个、5个节目)的情况共有3种。这三个班演出节目数的不同情况共有3+6+6+3+3=21种。
13、最终能获得5个正方形,边长分别是15厘米、6厘米、6厘米、3厘米、3厘米

阅读全文

与小学五年级数学竞赛题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99