导航:首页 > 小学年级 > 小学六年级数学总结

小学六年级数学总结

发布时间:2020-12-05 04:00:09

小学六年级上册数学知识归纳(人教版

http://wenku..com/view/a79dd3c7d5bbfd0a7956735a.html
http://wenku..com/view/9403c096daef5ef7ba0d3cf0.html
http://wenku..com/view/1eed476bb84ae45c3b358cfa.html
建议你去网上搜一下,这几个网址里都有
给你一个样本:

人教版六年级数学上册知识点整理归纳
六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如 的分数可折成( )×
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
“1”× =
例如:求25的 是多少? 列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( “1” ) ×
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数±乙数× 即25±25× =25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,.
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= =周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径= ×2πr=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)
扇形面积 = πr2× (n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数 化 小数:分子除以分母。
二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十

折扣 成数 几分之几 百分之几 小数 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八点五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半价
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(应纳税额)=(总收入)×(税率)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
8、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几
(2)求甲比乙多(少)百分之几—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第六单元、统计
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
第七单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
头数 鸡(只)兔(只) 腿数
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔
(2) 假如都是鸡
(3) 假如它们各抬起一条腿
(4) 假如兔子抬起两条前腿
3、 用代数方法解(一般规律)
注释:这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
二、和尚分馒头
100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?
国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
大小和尚各几丁?"
如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
方法一,用方程解:
解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,鸡兔同笼法:
(1)假设100人全是大和尚,应吃馒头多少个?
3×100=300(个).
(2)这样多吃了几个呢?
300-100=200(个).
(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?
3- = (个)
(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分组法:
由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。
这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:
100÷(3+1)=25(组)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我国古代劳动人民的智慧由此可见一斑。
三、整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?
180×56 =150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?
120÷35 =200(人)

⑵ 小学六年级数学的知识点总结

1到6年级数学公式

1 .每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数

2. 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数

3. 速度×时间=路程
路程÷速度=时间
路程÷时间=速度

4. 单价×数量=总价
总价÷单价=数量
总价÷数量=单价

5. 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率

6 加数+加数=和
和-一个加数=另一个加数

7 被减数-减数=差
被减数-差=减数
差+减数=被减数

8 因数×因数=积
积÷一个因数=另一个因数

9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数

小学数学图形计算公式
1. 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2. 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a

3. 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 .长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh

5 .三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高

6. 平行四边形
s面积 a底 h高
面积=底×高
s=ah

7. 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2

8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏

9. 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径

10. 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)

植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间

追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间

流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2

浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量

利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)

⑶ 小学六年级毕业班的数学总结

基本概念
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。
(五) 约分和通分
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。

四 运算的意义
(一)整数四则运算
1整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数+加数=和 一个加数=和-另一个加数
2整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
一个因数× 一个因数 =积 一个因数=积÷另一个因数
4 整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1. 小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5. 乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。
(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
(五)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。
11. 分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
12. 分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(六) 运算顺序
1. 小数四则运算的运算顺序和整数四则运算顺序相同。
2. 分数四则运算的运算顺序和整数四则运算顺序相同。
3. 没有括号的混合运算:
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
4. 有括号的混合运算:
先算小括号里面的,再算中括号里面的,最后算括号外面的。
5. 第一级运算:
加法和减法叫做第一级运算。
6. 第二级运算:
乘法和除法叫做第二级运算。

⑷ 小学六年级数学学习心得

从小时候学数数,到现在的数学学习,无不是数学的范畴。现在我向大家介绍一下我学数学的方法。
一、不要怕数学。在我们的生活中,数学是无处不在的:我们买东西,付钱要用数学;看球赛,比分也是数学;勾股定理、黄金分割与优选法在我们生活中的应用更是比比皆是。其实,现代数学的范围已大大扩大了,包括数论、图论、概率、悖论等多方面的内容,而图论、递推关系在计算机中的应用也是非常广泛的。所以,数学与我们的生活有着紧密的联系,可以说:数学是无处不在的。
二、学数学要学习什么。一句话,就是学习它的思维方法。在我们的现阶段,以及我们工作以后,很少能用到具体的数学题,但是,数学的思维方法是指导我们学习、工作的思想,所以,数学的思维方法是非常重要的。举个例子:数论中有一个著名的问题,就是歌德巴赫猜想。许多科学家都表示,用现有的数学方法无法解决这个问题。这样,要想解决歌德巴赫猜想必须用一种新的方法,而这种方法就是我们需要的。这也就是数学的精髓所在。
三、打好基础,吃透课本。课本的题目是比较简单、比较基础的,却也不能忽视,这是因为课本的题目为我们提供了一种简捷的思维方式和比较严密的解题步骤。数学是一门要求严密的科学,需要思维的严谨性,课本就为我们提供了一个范例。这是一个平行四边形,求证它的对边相等。我们想容易想到,连接对角线,用两个三角形全等来证明。这就提供了一个思路:遇到平行线,可以做截这两条平行线的直线,把平行关系转化为角相等的关系。这也用到了一种转化思想。掌握简单题的思路,难题也就能变得简单了。
四、拓展知识,提高能力。现在,计算机非常热门,而计算机编程就能用到图论、递推关系等数学知识,提前了解一下是很有帮助的。我们是21世纪的学生,应当具有宽广的知识面和较强的综合能力。

学习上在课前必须预习老师所要讲解的内容,对于简单的要自己理解掌握,公理、公式和推论要有意识的去记忆,并划出自己不懂得地方;
(2)客商要认真听讲,绝对不能开小差,更要着重听你在预习时感到困惑的地方,并记下经典例题;
(3)课后认真做练习。对自己把握得不好的地方要加大训练,记熟公式。
学习数学的主要方法就是加深理解,在理解之上记忆。
总之,数学是一门基础学科,它的应用是非常广泛的。我一定会用心去学好。

⑸ 六年级数学学期总结怎么写!!!!!!!!!!!!!!!!

数学
百分比的应用及等可能事件
1、求一个数是(占)另一个数的百分之几
关键字:是、占
方法:是(或占)前面的量除以是(或占)后面的量,结果化成百分数。
2、一个数的百分之几是多少
“的”相当于“×”,是相当于“÷”
如果“的”前面的量知道,用乘法;即该数乘以相应的百分数。如果“的”前面的量不知道,用除法,即用是后面的量除以相应的百分数。
3、求一个数比另一个数多百分之几或百几分之几
方法:用它们的差值除以比后面的量,最后画成百分数
4、成数和打折问题
几成(或几折)就是十分之几就是百分之几十;如:三成就是 ,就是30%;七五折就是75%。
折数= ×100% =几折 现价=原价×折数 原价=
增加的成数= ×100%=成数
5、在生产和生活中常用的百分率
及格率= ×100% 优秀率= ×100%
合格率= ×100% 次品率= ×100%
增产率= ×100% 减产率= ×100%
出勤率= ×100% 缺勤率= ×100%
成活率= ×100% 死亡率= ×100%
出米率= ×100% 出油率= ×100%
得票率= ×100% 收视率= ×100%
6、盈亏问题
盈利率= ×100%= ×100% 售价=成本+成本×盈利率
亏损率= ×100%= ×100%
7、纳税问题
应纳税额=计税额×税率 计税额= 税率= ×100%
8、利率问题
利息=本金×利率×期数 本利和=本金+利息
利息税=利息×20%=本金×利率×期数×20%
税后利息=利息×(1-20%)=本金×利率×期数×(1-20%)
税后本利和=本金+税后利息
9、可能性的大小p=
圆的周长和面积
一、周长和弧长
C= d C=2 r d= r= = C =l+2r l= C = r+2r l= l= ×C C =l +l +(R-r)
说明:1、求半圆面的周长或已知半圆面的周长球半径用公式C = r+2r
2、已知圆心角、半径、弧长中的两个量,求第三个量用公式l=
3、已知圆心角、弧长、圆的周长中的两个量求第三个量用公式 l= ×C
二、面积
S= r S= d S = r S= S = (R -r )
S = S = lr S = C S =
说明: 1、已知圆心角、半径、扇形面积中的两个量,求第三个量用公式S =
2、已知弧长、半径、扇形面积中的两个量,求第三个量用公式S = lr
3、已知圆心角、扇形面积、圆的面积中的两个量,求第三个量用公式S = C
三、时钟问题
针长是半径,给定时间内转过的角度是圆心角,求针尖端走过的路程就是求弧长,求针扫过的面积就是求扇形面积。
圆心角的确定:时针,用经过的小时数乘以30°;分针,用经过的分针数乘以6°。
补充说明:
1、当圆心角不变时,周长、弧长、与半径、直径扩大或缩小相同的倍数而面积扩大或缩小它们的平方倍;当半径不变时,周长、弧长、面积与圆心角扩大或缩小相同的倍数。
2、当已知圆心角时,求弧长是圆的周长的几分之几,就是求圆心角是周角的几分之几;求扇形的面积是圆的面积的几分之几,就是求圆心角是周角的几分之几;反之求圆心角是周角的几分之几,就是求弧长是圆的周长的几分之几,或求扇形的面积是圆的面积的几分之几。

我六年级数学阶段的学习方法的总结
初中阶段的我,不仅努力学习了课内的文化知识,还留心总结了一些学习方法。渐渐地,我形成了一套有我的特色的学习方法,但如果你真正了解了我的学习方法的内涵与真谛的话,你会发现这一方法不仅仅是用于我,还适用于很多同样的同学。由于我接触的中上等的同学比较多,此方法更适用于学习上不错,但总也不能十分拔尖的同学。
其实学习方法多种多样,不同的人也要采取不同的学习方法。我写这篇文章也只是想把我的制定学习方法的方法告诉大家。这样才能真正使那些读过此文的人受益。学习别人的方法切忌照搬。一定要有自己的主见,通过实践总结出适合自己的学习方法,这样才能有收获。
还要在这里强调一点:学习不是苦差事,做好学习中的每一件事,你就会发现“学习,是一块馍,你能嚼出它的香味来。”(此句引自肖复兴肖铁的《我教儿子学作文》1996年4月第一版211页)
这一切都是我个人的一些想法、经验。我的思想也许比较独特。合理的可以自己试试,偏激的干脆掠过不读。我会从以下几个方面进行阐述。
1、 学习未动,兴趣先行
2、 务学与求道
3、 自信是成功的第一秘诀
4、 态度决定一切
5、 不强调进步
6、 练就过硬的本领是学习的根本目的
7、 会玩、会偷懒、然后会学
8、 考试、分析考试结果、做出下一步计划、调整自己
9、 学习别人
一、 学习未动,兴趣先行
孔子曰:“知之者不如好之者,好之者不如乐之者。”这句话是非常有道理的,它深刻地阐释了学习兴趣对于学习的作用。
之所以把兴趣放在首位,也是因为兴趣是十分重要的。兴趣能够调度人的更多的精力在某一方面。如果你把兴趣调整到学习上,那你就比别人多了许多精力,胜算也就大一些。
经常向一个学习很好的人学习,3年来,最大的发现也莫过于:她对任何一个科目都充满了兴趣。这种兴趣,使它比别人多了一份求知欲。这种求知欲,使他不会放过每一个从她身边划过的知识。这也使她有了别人都难以做到的对于学习的一种艮劲,所以她能过做出许多别人做不出的难题,也使她可以把自己的基本功培养得十分强大。这足以体现兴趣的力量之大了。
培养兴趣也并非一件难事。在这里我只介绍两种方法。
可以利用人的条件反射,如果一个人总是疲劳时候读书学习,他一学习就想睡觉,长此以往,学习和睡觉建立了条件反射,学习的时候就总是无精打采的。这就是有些人上课总爱睡觉的缘故了。你可以在学习前做一些使自己身心愉悦的事情,学习的时候保持这种愉悦的心情。以后,愉快与学习就形成了条件反射,一学习就高兴,一高兴就学习。这样就做到了培养学习的兴趣。不过学习,其他方面也可以这样做。
兴趣需要别人的赞扬和鼓励。当你需要针对某一方面的兴趣时,你先硬着头皮做这种并不愿意做的事情,并投以很大的热情,争取做得好一点。得到别人的夸奖和鼓励,自然就更愿意做了,这样也可以培养兴趣。我初三的下半学期,有一个阶段政治很差,又没有什么兴趣。但我觉得必须提高政治的成绩了。于是我每天回家先写最难办的政治作业,经常主动地找政治老师探讨问题。就这两条措施,十天之内使我的成绩大有长进。
可以说:兴趣是学习中最活跃的因素,是影响学习成绩的主导因素,决定着学习中的一切其他方面。必须重视兴趣。
二、 务学与求道
还是要引用孔子的一段话:“学而不思则罔;思而不学则殆。”这句话可不是随便说说,是有着深刻内涵的。它揭示了务学与求道的基本关系。
务学就是学知识学本领,掌握技能;而求道是通过学习进一步思考得来的有关事物一般规律的普遍真理(在这里可以认为是那些有实践意义的理论)。务学与求道又可以理解为理论和实践之间的关系。
务学与求道必须协调发展,保证二者同步实施,同步发展。
务学和求道结合的好处很多,如果你感兴趣,可以找出苏轼的《日喻》来读读,那里已经叙述得很清楚了。
搞好务学与求道之间的关系,包括两方面的内容。一是在思考和实干结合上,二是在研究学习方法和实践学习方法上。
思考和实干必须结合:在学习中应该善于思考,从学到的每一点经过思考能够扩展出许多知识,这样就丰富了你学习的内容。这里仅举一例。初二物理学习压强时涉及了连通器原理。书上是这样写的:“上端开口、下部连通的容器叫连通器,连通器里的水不流动时,各容器中的水面总保持相平。”(人教版物理第一册2000年3月第一版156页)那么就可以这样思考上端不开口的是什么样子的(托利拆里管),思考下部不连通改为上部连通是什么(虹吸现象),思考连通器中不装水而装了两种不同的液体会怎样(液体压强的计算),思考连通器中的水如果流动会怎么样(液体流速对压强的影响),思考连通器有哪些应用(船闸的原理),思考在一个水面施加压力,另一个水面产生向上的压力是多少(帕斯卡定律,千斤顶的原理),思考如何证明水面会相平(平衡力)。一个定义,引出了7个思考。这样你的知识就大大地丰富了。
研究学习方法和实践学习方法必须结合:通过思考得到了学习的方法,就一定要试一试,通过尝试为自己积累许多宝贵的经验,通过反复的思考这些经验又能够想出新的学习方法。这样可以不断的有新的学习方法。这才是确定学习方法的方法。
搞好了务学与求道的关系,是使自己永远更新知识,丰富自己的头脑的必要条件,也是不断保持最新、最适用于自己的学习方法的要点。坚持思考与学习同步发展代表着先进的学习方法的发展要求,代表着先进学习理论的前进方向,代表了掌握最广大知识的能力水平。务学与求道必须协调发展,二者要同步实施,同步发展。
三、 自信是成功的第一秘诀
爱迪生说过:“自信是成功的第一秘诀。”自信在学习中是十分重要的,而且自信是学习的过程中容易忽视的部分之一。
有时候学习成绩不好,人们往往归结于自己的不够努力,或者不够聪明,往往忽视心理上对学习成绩的巨大影响。可以说:心理上的调整是要重于学习方法、学习态度(努力与否)的。在学习中,心里安静,就能够踏下心来认真学习,做题;心理积极就能够不断地将压力转化为动力,促进自己的前进;同样的,心里信任自己,总并不盲目地认为自己是对的,就能够不胡乱猜忌自己已经做出来的答案。这点看似很小,但起到了至关重要的作用,一是考试的时候,你会省下时间去检查那些自己确信正确的题目,一是考试以后你心里会变的有根。其实自信是一种生活态度,是一个成功者必备的素质。自信心不是无端地建立起来的,而是自己要有过硬的本领扎实的基础。这些会在下文中写到的。
做理科题应该能够做到:做完之后自己就知道正确与否。其实自信就是相信自己有能力解对题。它所起到的作用是将你已有的能力极大的发挥出来。他在你学习的过程中处处有所体现,所以它的作用的确是很大的可以说:我是自信造就的成功者,我的每一步成长都伴随着自信的更加成熟。
说了那么多,还是说一点实际的东西吧。你如果要创造自信,关键的就是要把自己放在一个强者的地位。如果你有强的科目,那你就可以找一个在这方面不如你的,对他说:“我决定要帮你学某某科的,有什么需要我帮忙的吗?”给他讲题,给他找题做。这是创造自信一个非常好的办法。也可以做一点别人多忽视的题,使成绩有很快的上升,也能够增强自信。
自信是最大限度发挥自己能力的前提条件。如果你有自信,你就可以说自己是一位不折不扣的成功者。
四、 态度决定一切
米卢说过:“态度决定一切。”这句话不仅适用于足球,同样适用于学习。
学习中的态度包括以下几个方面:主动、进取和奋斗。
拥有一个主动的态度十分重要,可以说:“天才,就是主动性的爆发。”遇到了每一件事绝不退缩,积极地去做,这就是一种主动的态度。主动可以使你比别人多许多做事的时间,可以比别人多做许多需要做的事情。你得到的练习就会很多,也更容易受到老师的关注。
进取可以让你不停地向上,防止人变得堕落。向上看,至少能够不往下走。这里不再多说。
奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。
态度是实力的前提,有良好的态度才能题得到自信、过硬等一系列的东西。态度和兴趣同等重要。
五、 不强调进步
说了那么多进步的东西,好像只要这样做就能够进步似的。其实事情并不像想象得那么简单。你进步别人也进步,就体现不出来。非但什么时候产生了跨越式发展了,才有可能看得出来。不进步或小幅度的退步是非常正常的。
如果你觉得自己停滞不前,那你就已经在进步了。如果你初中三年在学校的名次都没有变,那你就已经是进步了。因为你学的知识越来越难了。何况大家都在进步。
暂时的停步不前是为你得下一次更大的进步做准备,所以要把做出了巨大的努力之后没有效果作为平常的事情。毕竟有很多事情是不随人愿的。
六、 练就过硬的本领是学习的根本目的
过硬,就是基础扎实。这是学习的核心问题。记住,无论什么样的学习方法都必须有利于使自己的基础扎实,有利于培养自己良好的习惯及以更高水平的能力,有利于增强自己的学习兴趣及自信心。这是我们评判学习方法是否对自己有利的根本依据。而其中核心就是扎实的基础。
扎实的基础可以使成绩稳定,扎实的基础可以使每一次考试无所惧怕而坦然面对,扎实的基础保证做题的速度与质量兼得,扎实的基础可以使……它的好处很多很多。做到就更非易事。
据我理解做题时最好的方法,但不同的人做题会有不同的效果。做题少的人不一定学习差,做题多的人也不一定就成绩好。
做题有助于过硬,所以做题十分有必要。老师留的题不可不作,但自己也要根据自己的情况补充一些练习。
选题上是有学问的。做什么样的题要根据自己要达到什么样的目的来决定。要是自己做题更加熟练,就需要找一些并不是很新颖的一般题来做,这种题不厌多做,几十道题如果涵盖面广的话,可以多做上几遍。初二的时候,我的整式计算很差,几十道题全是枯燥的计算,我不停地做了好几遍,一上午就使自己的纯计算能力有了很大的长进。如果要多见见各种类型的题目就一定要找新颖的题。如果要锻炼自己的解体能力,就要找大题由简入深做下去。
做题一定要做细,必须落在笔上,最好能够写过程。只有做精做细,才有条件将来做大做强。做题切不可着急,需要心平气和,像品咖啡一样,慢慢地“品味”你所做的几道题。如果没有时间就不要做题。应该记住做题是“宁缺毋滥”的。
抽空做题也不是不可能,但最好细微的时间被用到文科上,这样文科和理科就能够综合地发展了。
七、 会玩、会偷懒、然后会学
把玩和偷懒放在一起,但他们实际上是两个问题。
玩主要指在学习之余要有一定的兴趣爱好,另外还要通过玩来放松身心,使下一次的学习更有效果。兴趣爱好可以使人有机会调整自己的身心,有办法通过更换自己的注意力所在,来调整自己的兴奋点。有了爱好,也有助于培养学习上的兴趣。爱好决不是占用学习时间没用的东西,它有利于提高对学习的兴趣,有利于提高学习及其他一些事情的效率。这种爱好必须是自己真正喜欢的,而不是别人逼迫的。做消耗体力的运动也能够缓解脑力上的疲劳。
偷懒实际上是指寻找更好的方法。这里只适用于理科。当遇到一道十分复杂的题目时,不要急于往下做,不要用麻烦的方法解决。花点时间想想有没有更好的方法。这样不仅节省了你解这道题的时间,也提高了你解决问题的能力。非常有作用。女生学理科不好很大的原因就是不懂得偷懒。
硬学不会有最好的成绩。如果多出去旅游还能丰富一下自己的经验,可以培养人的内在修养和外在阅历。人经常做到以上两点,可以变得有灵气。这就是有些人不那么努力就会取得很好成绩的道理了。
八、 考试、分析考试结果、做出下一步计划、调整自己
有一次数学考试,没带手表。考试的是很特别着急,结果十分不理想,由于着急好几道题都不会做了。从此我就再也没有在考试的时候带过表。考试,是一件平常的事情,应当以平常心对待。考试不过是检测你对知识到底掌握了多少。这仿佛就是测肺活量,测量你到底有多大的呼吸量。没有什么区别。应该抱着“有多大劲儿,吹多大气儿”的思想来考试。这样你就能够轻松地面对考试。
考过试了,就很自然地要分析考试。分析得正确与否,关系重大。
分析之前,假定这次说明不了什么问题,这样能够使分析错了的不良后果减小到最少。
第一步,想一想,这次考试自己满意不满意,对什么满意,又对哪些方面不满意。再想想,这次考试有没有什么特殊的,例如:第一次考试、没有复习的考试……如果有这种特殊情况,那么这里就可以得出结论了:
1、 考得不好,说明不了什么问题,我努力,我就不信下回我考不好的!
2、 考得好,说明不了什么问题,一时侥幸,还得努力,看下次才是印证我的实力的时候!
如果一切正常就进行下一步。
第二步,自己是不是偏科了。这时应对弱项多加练习
第三步,自己是智力因素还是非智力因素导致的丢分。智力因素就要调整自己的方法,非智力因素就要端正自己的态度。
第四步,作下一步学习的计划。
第五步,认真修改自己的分析。
最后,看看自己在年级里是进步了还是退步了,不要太在意,不过大幅度的下降需要一些非常手段了。
在学习的始终,贯穿的就是计划的制定。计划分为长期计划和短期计划。
短期计划要不停地制定,例如:晚上先写什么作业,最近几天的主要任务是什么(做哪的课外题、攻克哪方面的难关……)这都很好制定。
长期计划制定以后必须坚持谨记,卧薪尝胆就是长期计划成功的最好的例子。诸葛亮的隆中对也是十分成功的长期计划。
计划的制定切忌过高过大,尤其是短期计划,制定时必须考虑到它的可行性。而且每一步都要按照计划实行。
制定计划还要重视它的指导性。计划一定要有计划的价值。用它指导我们的学习工作。必须要看出计划是你的效率提高了,你的生活不再是那么没条理了才好。
说了这么多,关键还是要落实到行动上去。这就需要发现了自己的问题以后,对自己做出相应的调整。
如果你现在是这样,不调整你会永远是这样,不会发生变化。那么渐渐地你就失去了主动,再要想自主的调整就很难了。
调整也分步骤
1、 没有好的办法,或拿不定哪一种好时,就不要调整,因为调整会浪费你的时间精力,到头来没有多大的成效反而得不偿失。必须考虑到前面我的道的学习中的“三个有利于”
2、 小的调整直接进行,大的调整需要有一个试用期,实行大的调整前,必须考虑慎重,我们不能输掉长达一个月的时间。
3、 在考试中印证自己,如果和自己的预想一样,就进行下去。不一样,就进一步调整
4、 很久以后,回想自己的调整。看看这个调整是不是有效,能不能得出什么结论来。为以后的生活积累经验
调整是取得进步,不断向上前进的必由之路。
九、 学习别人
孔子曰:“三人行必有我师”,别人总会有比自己强的地方。别人做了什么自己不做的事,就应该想想,我这样做对我有没有益处,这是他成功的秘诀吗?这是我学习别人的主要方法。
不要避免与比自己成绩好的人说话,他们有很多地方是你所没有的。应该向他们学习。必要的时候厚脸皮一点,向比自己强的人多请教一些东西,探讨一些学习的方法。这些人往往是能够给你最大帮助的人,他们的无意的一句话,也许会使你茅塞顿开。这都说不准的。
比你成绩差的人未必处处比你差,他们之中也有你学习的地方,你必须分清什么样的是造成他们不如你的原因,就不要学。而提炼出来他们身上的精华。
王羲之曾经集合众家之长,才能尽变古体,被世人尊为书圣。《吕氏春秋》曾经集合诸子百家思想成为一字千金的难得好书。韩非子也曾集合各种不同的文化思想,成了著名的思想家。孔子周游列国,学到的知识尽为其所用,成为世代传诵的圣人。他们都是在自己的领域的集大成者。发明者、创造者,都没有留下姓名,只有集合了那些发明创造创造出巨大的价值的,才是成功的人。我们也要学习所有的学习方法,尽为我们所用,才能够有成绩上质的飞跃。

⑹ 小学六年级数学知识点总结(下册)

下面是我的复习资料。
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)小学奥数公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
参考资料:网络知道
(一)数的读法和写法 1.
整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3.
小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4.
小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5.
分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 8.
百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1.
准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000
改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2.
近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3.
四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略
345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1.
比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2.
比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2.
分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3.
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4.
小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6.
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2.
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3.
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;
两个合数的公约数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
小数
1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、
5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54
” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有
一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
分数
1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率
或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

⑺ 小学六年级数学学习总结怎么写

总结
时光如逝,岁月如流,一转眼的时光,6年的学习生活已经过去了.,在学期末,特写此文以总结6年来的学习生活。
在老师和同学们关心、帮助下,通过自身不断努力,各方面均取得长足的进步。
在同学之间的互相学习中,体会到了知识就是人的力量源泉,没有专业知识、专业技巧,什么成功都不会与你相约,只有真正的掌握了解所学的东西才能便于日后面对社会的种种问题。对于现金社会,我要不断的充实自己,完善自己,使自己能够成为适应这个社会的专业人才,
将来如果社会给我机会的时候,我就能以我的所学完完全全的融会到往后的工作当中去,
所以现在属于我们的知识储备期。曾经有位老师跟我们说过:人的机遇难求,
当机遇来的时候就要好好的抓住它,当时如果你没有驾驭它的能力,
你还是只能眼睁睁的看着它从你的身边溜走,而无可奈何,与其到时后悔,
不如现在好好储备自己的知识量,时刻准备着,等待着机会的到来。……
总结现在有以下几点:
第一,学习态度比较端正。能够做到上课认真听讲,不与同学交头接耳,不做小动作,自觉遵守课堂纪律;对老师布置的课堂作业,能够当堂完成;对不懂的问题,主动和同学商量,或者向老师请教。

第二,改进了学习方法。为了改进学习方法,我给自己订了一个学习计划:
(1)做好课前预习。也就是要挤出时间,把老师还没有讲过的内容先看一遍。尤其是语文课,要先把生字认会,把课文读熟;对课文要能分清层次,说出段意,正确理解课文内容。
(2)上课要积极发言。对于没有听懂的问题,要敢于举手提问。
(3)每天的家庭作业,做完后先让家长检查一遍,把做错了的和不会做的,让家长讲一讲,把以前做错了的题目,经常拿出来看一看,复习复习。
(4)要多读一些课外书。每天中午吃完饭,看半个小时课外书;每天晚上做完作业,只要有时间,再看几篇作文。

第三,每天回家我就先完成老师布置的作业,然后完成妈妈布置的作业,做完作业,看一些课外书。虽然我每天这样学习,但月考时,我的成绩却不很理想。
最后一次月考后,在老师和爸爸、妈妈的帮助下,我对自己的学习进行了认真总结,从中悟出了不少好的学习方法。
我有个不足的地方。就是有时听老师布置作业时不够专心,总是一只耳朵进,一只耳朵出,回到家里糊里糊涂,只好打电话问同学了。
在新的学期,我要发扬成绩,改正错误,更加刻苦努力、一丝不苟的学习,争取每门功课都能取得好的成绩,当一个名副其实的好学生。同学,关心集体,尊敬老师,经常帮老师干活,且帮助集体做事.

阅读全文

与小学六年级数学总结相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99