A. 小学五年级下学期的数学小论文
“十一”期间,许多商场都在打折,趁着这个好时机,我和爸爸妈妈一起去了“万霖”商场。
在二楼,我们看中了一套西服,它的标价是五百二十元,售货员说:“现在正赶上‘十一’,您可以选择打八折或者满二百返一百六十,两种都差不多。”
真的差不多吗?我脑子产生了这样一个疑问。如果选择打八折,那么就要花520×0.8=416(元)。而要是满两百返一百六十呢。我们要先付520元,之后会拿到160×2=320(元)的返券,那我们实际就花了520-320=200(元)。416和200比起来,当然第二种比较好。
可是拿到返券之后呢?再买320元的东西又可以返160元,而这160元的返券离200元只差200-160=40(元),你要是填上这40元买东西,就又可以返160元。你难道不心动吗?可如果真这样做,你就掉入一个无底洞,花200返160,花200返160……你永远也花不完剩下的钱。
商家为了赚钱可真是“费尽心机”啊!
B. 人教版五年级下学期数学复习重点
图形的变来换、因数与倍数、长方体与正自方体、分数的意义和性质、分数的加法和减法、统计、数学广角。
复习重点:
1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。
2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。
3、求两个数的最大公因数和最小公倍数。
4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。
5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和计算。
6、在方格纸上画轴对称图形以及将简单图形旋转900
复习难点:
1、在方格纸上将一个简单图形旋转900。
2、分数的意义和基本性质的实际运用。
3、生活中的某些实物的表面积和体积的测量及计算。
4、整数加减法的运算定律推广运用到分数加减法。(尤其是减法的性质的运用)
5、根据具体问题,选择适当的的统计量(平均数、中位数、众数)表示数据的不同特征。
6、对统计图中的数据进行合理分析。
C. 五年级下册数学总结(人教版)
人教版五年级下册数学复习提纲
第一单元 观察物体
1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。 由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形
先根据平面图分析出要拼搭的立体图形有几层; 然后确定要拼搭的立体图形有几排;
最后根据平面图形确定每层和每排的小正方体的个数。
二 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。 大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 找因数的方法:
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,最小的倍数是它本身。
2、自然数按能不能被2整除来分:奇数 偶数 奇数:不能被2整除的数 偶数:能被2整除的数。
最小的奇数是1,最小的偶数是0.
个位上是0,2,4,6,8的数都是2的倍数。 个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。
3、自然数按因数的个数来分:质数、合数、1. 质数:有且只有两个因数,1和它本身 合数:至少有三个因数,1、它本身、别的因数 1: 只有1个因数。“1”既不是质数,也不是合数。 最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、分解质因数
用短除法分解质因数 (一个合数写成几个质数相乘的形式) 5、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
2
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质; ⑷2和所有奇数互质; ⑸质数与比它小的合数互质;
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 6、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。
三 长方体和正方体
【概念】
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽 -高 a=L÷4-b-h 宽=棱长总和÷4-长 -高 b=L÷4-a-h 高=棱长总和÷4-长 -宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 正方体的表面积=棱长×棱长×6 S=a×a×6 6、物体所占空间的大小叫做物体的体积。 长方体的体积=长×宽×高 V=abh 长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长 V=a×a×a= a3
7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 8、a3读作“a的立方”表示3个a相乘,(即a·a·a) 【体积单位换算】 高级单位 低级单位
低级单位 高级单位
进率: 1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米
重量单位进率,时间单位进率,长度单位进率 计算不规则物体的体积:
×进率
÷进率 ① 容器的底面积×上升那部分水的高度。
计算方法
② 放入物体后的体积 — 原来水的体积 被浸没物体的体积等于
上升那部分水的体积
四 分数的意义和性质
分数的产生
分数的意义 分数与意义 :把单位1平均分成几份,表示其中的一份或几份
分数与除法 :分子(被除数),分母(除数),分数值(商)
真分数 真分数小于1
真分数与假分数 假分数 假分数大于1或等于1.
带分数 (整数部分和真分数)
假分数化带分数、整数(分子除以分母,商作整数部分 余数作分子)
分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,
分数的基本性质 分数的大小不变。
通分、通分子:化成分母不同,大小不变的分数(通分)
最大公因数
约 分 求最大公因数
最简分数 分子分母互质的分数(最简真分数、最简假分数) 约分及其方法 最小公倍数
通 分 求最小公倍数
分数比大小 (通分、通分子、化成小数) 通分及其方法
小数化分数 小数化成分母是10、100、1000的分数再化简
分数和小数的互化
分数化小数 分子除以分母,除不尽的取近似值
最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。 分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54
=0.8 81=0.125 83=0.375 85=0.625 87=0.875 201=0.05 25
1=0.04。
五 物体的运动
一、平移 物体或图形平移后本身的形状、大小和方向都不会改变。
二、轴对称 1、轴对称图形: 把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称图形的特征和性质: ①对应点到对称轴的距离相等; ②对应点的连线与对称轴垂直; ③对称轴两边的图形大小、形状完全相同。
三、 旋转 1、物体旋转时应抓住三点:① 旋转中心; ② 旋转方向; ③ 旋转角度。 2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。
六 分数的加法和减法
同分母分数加、减法 (分母不变,分子相加减 )
分数数的加法和减法 异分母分数加、减法 (通分后再加减)
分数加减混合运算
带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
七 统计与数学广角
众数 一组数据中出现次数最多的数叫众数。
众数能够反映一组数据的集中情况。
统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图
综合应用 打电话的最优方案
中位数的求法:1、按大小排列。
2、如果数据的个数是单数,那么最中间的那个数就是中位数; 如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
平均数的求法:总数÷总份数=平均数
八 数学广角找次品
数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次 4~9个物体,保证能找出次品需要测的次数是2次 10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次
D. 人教版小学五年级下学期数学书目录
目 录
1 图形的变换...................2
2 因数与倍数..................12
3.长方体和正方体...........27
粉刷围墙...................58
4.分数的意义和性质........60
5.分数的加法和减法.......104
6.统计.............................122
打电话.........................132
7数学广角.......................134
8总复习..........................138
E. 小学五年级下半学期数学应用题比较难的20道题
(1)某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%.原来要做多少玩具?(请写出计算过程)
(2)某校办工厂这个月生产本子的增值额为3万元.如果按增值额的17%交纳增值税,这个月应交纳增值税多少元?(请写出计算过程)
(3)爸爸这个月的工资是2100元,按规定工资在1600元以上的部分应缴纳所得税,如果按5%的税率缴纳个人收入调节税,爸爸这个月应交纳税多少元?他实际收入多少元?(请写出计算过程)
一、有关平行四边形、三角形、梯形面积计算的应用题
1、解放军战士开垦一块平行四边形的菜地。它的底为24米,高为16米。这块地的面积是多少?
2、一块梯形小麦试验田,上底86米,下底134米,高60米,它的面积是多少平方米?
3、一块三角形土地,底是358米,高是160米,这块土地的面积是多少平方米?
二、归总应用题
1、解放军运输连运送一批煤,如果每辆卡车装4.5吨,需要16辆车一次运完。如果每辆卡车装6吨,需要几辆车一次运完?
2、同学们摆花,每人摆9盆,需要36人;如果要18人去摆,每人要摆多少盆?
三、三步计算应用题
太阳沟小学举行数学知识竞赛。三年级有60人参加,四年级有45人参加,五年级参加的人数是四年级人数的2倍。三个年级一共有多少人参加比赛?
四、相遇应用题
1、张明和李红同时从两地出发,相对走来。张明每分走50米,李红每分走40米,经过12分两人相遇。两人相距多少米?
2、甲乙两地相距255千米,两辆汽车同时从两地对开。甲车每小时48千米,乙车每小时行37千米,几小时后两车相遇?
五、列简易方程解应用题
1、向群文具厂每小时能生产250个文具盒。多少小时能生产10000个?
六、有关长方体、正方体、表面积、体积(容积)计算的应用题
1、一个长方体的铁盒,长18厘米,宽15厘米,高12厘米。做这个铁盒的容积是多少?
2、一个正方体棱长15厘米,它的体积是多少?
1、某工地需要要黄土44.5吨,用一辆载重2.5吨的汽车运了10次,余下改用一辆载重1.5吨的汽车运,还要运多少次?
2、化肥厂计划36天生产化肥540吨,实际每天多生产5吨,实际需要几天完成? 3、农具厂原来制造5台农具用刚材1.8吨,技术革新后制造一台可节约用钢0.04吨,原来制造240台农具的刚材,现在可以制造多少台?
4、幼儿园买来5条毛巾和5块肥皂,买毛巾共用21.5元,买肥皂共用13.2元,一条毛巾比一块肥皂贵多少元?(用两种方法解答)
5、水果店运来45筐,苹果比梨多10筐,柑橘的筐数是苹果的1.2倍。运来柑橘比梨多多少筐?
6、甲、乙两工人程在山的两边同时开凿同一个山洞,甲队每天开13.8米,乙队每天开15.2米,40天开通。这个山洞全长多少米?
7、江南纺织厂两个生产小组共同织布3240米,甲组每天织布118米,乙组每天织布125米,两组合织多少天后还剩324米?
8、一辆汽车从甲地开往乙地,每小时以42.5千米的速度行1.5小时,这时距两地之间中点还有26千米,甲乙两地相距多少千米?
9、客货两车同时从甲乙两地相向开出,客车每小时行42千米,货车每小时行50千米。经过4小时后两车还相距100千米,甲乙两地相距多少千米?
10、小军和小平同时从A地背向而行,小军步行每分钟70米,小平骑自行车的速度是小军的5倍。几分钟后两人相距3360米?
11、甲、乙两地相距660千米,一辆汽车和一辆卡车从甲、乙两地相对开出,汽车每小时行48千米,卡车每小时行35千米,汽车开出。卡车开出后几小时两车相遇?
12、甲乙两车同时从AB两地相对开出,甲车每小时行42千米,乙车每小时行50千米,途中甲车因故障停驶48分钟,乙车开出5.3小时后两车在途中相遇。甲乙两地相距多少千米?
13、一辆汽车从甲地开往乙地,每小时以42.5千米的速度行1.5小时,这时距离两地之间的中点还有26千米。甲乙两地相距多少千米?
14、客车和货车同时从甲乙两地相向开出,客车每小时行42千米,货车每小时行50千米,途中开出5.3小时后两车在途中相遇,甲乙两地相距多少千米?
15、甲乙两地相距500千米,两车同时从两地相对出,开出5小时后两车相遇。客车平均每小时行60千米,货车平均每小时行多少千米?
16、某化肥厂十月份上半个月生产化肥200.5吨,比下半个月多产40.2吨。十月份生产化肥多少吨?
17、一个农机厂村有一批煤,原计划每天烧1.2吨,可以烧25天,实际烧30天,每天烧多少天?
18、甲、乙两地相距800千米,两列火车分别从甲、乙两地同时相对开出,5小时后还相距125千米。一列火车每小时行65千米,另一列火车每小时行65千米,另一列火车每小时行多少千米?
19、一个工厂制造一台机器原来需144小时,改进技术后,制造一台机器可以少用48小时。原来制造60台机器的时间现在可多制造多少台?(用两种方法解答)
20、小佳买本子比买铅笔多花0.5元,买了3支铅笔,每支铅笔0.15元,买了5本子,每本多少钱? 21、某厂甲车间原来就比乙车间少12人,现在从甲车间调10人到乙车间,这时乙车间人数是甲车间的3倍。甲、乙车间原来各有多少人?
F. 小学五年级下册数学题(有答案的)
你好,应用题对孩子综合能力要求比较高:
1、首先要求孩子要能读懂题意,阅读理解能力必须要培养;
2、理解题意还要能将公式定理、数字和题意结合,做出列式解答;
3、解答过程中,还要要求计算不出错,对孩子计算能力也是种考验。
所以,如果孩子应用题做得不好,建议参考这几点,对照孩子哪里有不足,加强练习即可。
G. 小学五年级数学的全部公式是什么
每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
1/4
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
追答
(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
H. 下站小学人教版五年级下册数学期末考试卷
小学五年级下册数学试卷
( 第三单元、长方体与正方体 )
姓名:________ 成绩:________
一、填空题。( 30 × 1 = 30 )
1、长方体或正方体6个面的________叫做它的表面积。
2、容器所能容纳物体的体积叫做它的________。
3、长方体与正方体都有__个面,__个顶点和__条棱。正方体是_____的长方体。
4、填写合适的单位名称:
电视机的体积约50_____。
一颗糖的体积约2_____。
一个苹果重50_____。
指甲盖的面积约1_____。
一瓶色拉油约4.2_____。
一个橱柜的容积约2_____。
5、把8个棱长2 cm的正方体摆成长方体,它的体积是_____ cm3。
6、底面周长为4 dm的正方体,它能装水_____ L,折合_____ ml。
7、在括号里填上合适的数。
500 ml = _____ dm3 = _____ L
960 cm3 = _____ dm3 = _____ L
400 dm2 = _____ cm2 = _____ m2
100 ml = _____ dm3 = _____ L
0.0195 cm3 = _____ L = _____ m3
1 m3 = _____ L = _____ cm3
8、2个表面积为6 dm2的正方体拼成一个稍微大一点的长方体,它的体积是_____ cm3。
9、相邻两个面积单位之间的进率是_____。
10、长方形的地长50 m,宽80 m,高20 m,这块地的面积是_____ m2。
二、判断题。( 10 × 1 = 10 )
1、一个长方体中,最多有8条棱完全相等、6个面完全相同。……( )
2、棱长为6 cm的正方体表面积和体积相等。……………………( )
3、一个正方体的棱长总和是6 dm,那么它的表面积是216 dm2。( )
4、一个物体的容积一定比体积小。………………………………( )
5、把一个长方体切成两个长方体,两个长方体的表面积之和与体积之和都不变。……………………………………………………( )
6、3x=x•x•x,x3=x+x+x。………………………………………( )
7、容积的计算方法是把物体外面的长、宽、高测量出来,再相乘。( )
8、长方体是特殊的正方体。………………………………………( )
9、体积相等的两个长方体,表面积一定相等。……………………( )
10、表面积相等的两个正方体,体积一定相等。…………………( )
三、选择题。( 10 × 1 = 10 )
1、用长64 cm的铁丝可焊一个长10 cm,宽4 cm,高( )的长方体框架。
A、1 cm B、2 cm C、3 cm D、4 cm
2、正方体的棱长扩大2倍,表面积扩大( )倍,体积扩大( )倍。
A、2 B、4 C、6 D、8
3、棱长1 m的正方体可以切成( )个棱长为1 cm的正方体。
A、100 B、1000 C、100000 D、1000000
4、体积为8.1 dm3的石块放进棱长3 dm的水槽里,水面会上升( )。
A、2.7 dm B、0.9 dm C、3 dm D、9 dm
5、一个正方体的棱长从4.5 cm增加到6 cm,那么表面积增加了( )。
A、27 cm2 B、94.5 cm2 C、216 cm2 D、124.875 cm2
6、750 cm3( )0.7 L,4600 ml( )5 L,5 m2( )500 ml,
3.8 L( )3800 ml,0.72 dm3( )72 cm3,850 cm2( )8.5 L。
A、> B、< C、= D、无法比较
四、计算题。( 3 × 8 = 24 )
计算下面图形的表面积和体积。 2 m
14 cm 3.5 dm 2 m
3.5 dm 5 m
4 cm 3.5 dm 2 m
3 cm 12 m
五、应用题。( 2 × 4 + 3 × 6 = 26 )
1、王叔叔要做2个长、宽、高分别是3.6 dm、25 cm、0.4 m的无盖长方体铁皮水桶,需要用铁皮多少平方分米?
2、小明要给电视机做一个布罩,电视机的长是5 dm,宽是45 cm,高是32 cm,做这个布罩需要布多少平方分米?
3、一块棱长0.9 m的正方体钢坯锻造成一块长9 m,宽3 m的钢板,钢板厚多少厘米?
4、一个包装箱的尺寸是50 × 80 × 60,求它的体积。
5、求苹果的体积。
要答案吗??
参考答案
一、填空题。
1、总面积 2、容积 3、6,8,12,特殊 4、dm3,cm3,g,cm3,L,m3 5、64 6、1,1000 7、0.5,0.5,0.96,0.96,40000,4,0.1,0.1,195,0.195,1000,1000000 8、2000 9、100 10、1000
二、判断题。
1、√ 2、× 3、× 4、√ 5、× 6、× 7、× 8、× 9、× 10、√
三、选择题。
1、B 2、B,D 3、D 4、B 5、D 6、A,B,A,C,A,B
四、计算题。
〔评分标准:公式、算式、得数、单位各2分〕
1、S表 = 220 cm2,V = 168 cm3
2、S表 = 73.5 dm2,V = 42.875 cm3
3、S表 = 180 m2,V总 = V长 + V正 = 120 + 8 = 128 m3
五、应用题。
〔评分标准:1~2题每题4分:公式、算式、得数和单位、答各1分
3~5题每题6分,公式和算式、得数和单位、答各2分〕
1、115.6 dm2 2、83.3 dm2 3、2.7 cm 4、0.24 m3 5、128 cm3
I. 2017到2018学年度下学期小学五年级数学练习题中段答案
2017到2018学年度下学期小学五年级数学练习题东段答案呢上次说答案现在都已经过了现在都已经是2020年了还问以前的干什么答案已经不重要了。
J. 小学五年级数学下册口算题带答案的
17×40=680, 100-63=37, 3.2+1.68=4.88, 2.8×0.4= 1.12
14-7.4=6.6, 1.92÷0.04=48, 0.32×500=160, 0.65+4.35= 5
10-5.4=4.6, 4÷20=0.2, 3.5×200=700, 1.5-0.06=1.44
0.75÷15=0.05, 0.4×0.8=0.32, 4×0.25=1, 0.36+1.54=2
1.01×99=99.99, 420÷35=12, 25×12=300, 135÷0.5=270
3/4 + 1/4 =1, 2 + 4/9 =22/9, 3 - 2/3 =7/3, 3/4 - 1/2= 1/4
1/6 + 1/2 -1/6 =1/2, 7.5-(2.5+3.8)=1.2, 7/8 + 3/8 =5/4
3/10 +1/5 =1/2, 4/5 - 7/10 =1/10, 2 - 1/6 -1/3 =1.5
0.51÷17=0.03, 32.8+19=51.8, 5.2÷1.3=4, 1.6×0.4= 0.64
4.9×0.7=3.43, 1÷5=0.2, 6÷12=0.5, 0.87-0.49=0.38
1.(1+1/2)(1+1/3)(1+1/4)......(1+1/100)
2.(1-1/2)(1-1/3)(1-1/4)......(1-1/100)
3.8+2-8+2
4.25*4/25*4
5.7.26-(5.26-1.5)
6.286+198
7.314-202
8.526+301
9.223-99
10.6.25+3.85-2.125+3.875
11.9-2456*21
12.0.5/11.5-4*2.75
13.1/2×3/5
14.3.375+5.75+2.25+6.625
15.1001-9036÷18
16.3.8×5.25+14.5
17.2.1*4.3+5.7*2.1
18.30×1/3
19.102*45-328
20.2/3×12
21.2.8*3.1+17.6/8
22.3/5×5/6
23.(50-12.5)/2.5
24.2/5×1/3
25.6110*47+639
26.1/2-1/6
27.3.5*2.7-52.2/18
28.1/7×1/5
29.3.375*0.97+0.97*6.625
30.25×4/5
31.6.54+2.4+3.46+0.6
32.5/6-1/2
33.95.6*1.8+95.6*8.2
34.1/2×1/5
35.600-420/12
36.344/3.6-5.4*0.25
37.16/2+30/2+90/6
38.3001-1998.
39.5000-105*34
40.0.15/0.25+0.75*1.2
41.(1/2+1/3+1/4)*0.24
42.(25+4)*4
43.300-4263/21
44.0.81/0.25+5.96
45.403÷13×27
46.1.5×4.2-0.75÷0.25
47.3.27×4 +3.27×5.7
48.(1.2+ 1.8)×4.51025-768÷32
49.0.25×80-0.45÷0.9
50.1025-768÷32
51.0.25*2.69*4
52.2348+275*16
53.2/9*15/8-1/12*9/5
54.2.4+2.4*(5.375-3.375)
55.645-45*12
56.0.15+1.2/0.24-0.45
57.3.75-(2.35+0.25/1.25)
58.76*1/4+23*25/100+0.25
59.10-2.87-7.13
60.0.96+9.6*9.9
61.7.5-5.7*1/3
62.12.37-3.25-6.75
63.16*6.8+2.2*16+16
64.401*19+284
65.58.7-16.65/3.7
66.0.4*4.7*2.5+(2.3+5.3)
67.9.31-1.125-7.875
68.640+128*45
69.8.2*1.6-0.336/4.2
70.400*(0.62+0.08)
2/1*2=1 3/1*3=1 3/2*3=2 3/1*6=2
4/3*8=6 5/3*20=12 7/3*14=6 8/7*40=35
4/3*16=12 9/5*27=15 2/1*30=15 12/7*24=14
30/1*30=1 51/9*102=18 19/9*76=36 4/9*8=18
5/8*90=144 99/98*99=98 3/14*6=28 7/1*28=4
10/1*90=9 5/3*105=63 19/7*38=14 5/1*25=5
8/19*16=38 61/60*122=120 7/2*28=8 6/1*48=8
9/7*18=14 25/7*100=28 9/5*81=45 8/9*16=18
123+25=148 123-35=88 56×7=392 135÷5=27
248+89=337 ... 146-23=123 ... 155×5=775 ... 456-12=38...
456+45=501 ...546-457=89 ... 45×10=451 ... 564-12=47...
879+54=933 ...896-546=350 ...56×12=672.... 45-5=9...
457+456=913...
脱式计算
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×〔15.5-(3.21+5.79)〕
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
19.4×6.1×2.3
5.67×0.2-0.62
18.1×0.92+3.93
0.0430.24+0.875
0.4×0.7×0.25
0.75×102 100-56.23
0.78+5.436+1
4.07×0.86+9.12.5
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×〔15.5-(3.21+5.79)〕
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
19.4×6.1×2.3 5.67×0.2-0.62
18.1×0.92+3.93 0.0430.24+0.875
0.4×0.7×0.25 0.75×102 100-56.23
0.78+5.436+1 4.07×0.86+9.12.5
简算
是乘号 /是除号
0.3*2.5*0.4
50*0.13*0.2
0.8*630*0.125
0.78*101
1.5*102
9.8*25
1.2*2.5+0.8*2.5
1.25*0.7*0.8
0.038*5*2.1
3.8+4.5+6.2
93/0.31/3
3.25-0.84-0.16
88*0.25*4
2.8*3.6+1.4*2.8
63*10.1
(3.2+0.128)/0.8
9.83*1.5+6.17*1.5
10.1*87
312*4+188*4
0.135*500*0.2
6.3+0.84+3.7+8.16
18.75-0.43-4.57
0.25*0.03*4
13.7*0.25*8
2.65*1.7+1.35*1.7
32.8+5.6+7.2
(2.5+0.25)*0.4
8*(2.5*0.25)
8.4*0.2+1.6*0.2
1.25*0.8*0.5
(1.5+0.25)*0.4
1.2*0.4+1.3*0.4
方程
9+6x=14
x+9x=4+7
2x+9=17
8-4x=6
6x-7=12
7x-9=8
x-56=1
8-7x=1
x-30=12
6x-21=21
6x-3=6
9x=18
4x-18=13
5x+9=11
6-2x=11
x+4+8=23
7x-12=8
X-5.7=2.15
15 5X-2X=18
3X 0.7=5
x+13=33
3 - 5x=80
1.8 +6x=54
6.7x -60.3=6.7
9 +4x =40
2x+8=16
3.5×2= 4.2 x
26×1.5= 2x
0.5×16―16×0.2=4x
9.25-X=0.403
16.9÷X=0.3
X÷0.5=2.6
3-5x=80
1.8-6x=54
6.7x-60.3=6.7
9 +4x=40
0.2x-0.4+0.5=3.7
9.4x-0.4x=16.2
12-4x=20
1/3x+5/6x=1.4
12x+34x=1
18x-14x=12
23 x-5×14=14
12+34x=56
22-14x=12
23x-14x=14
x+14x=65
23x=14x+14
30x12x-14x=1
x-0.7x=3.6
应用题
一、小数一步加、减法应用题
1、一本数学读物6.25元,一本语文读物5.86元。两本书一共要多少钱?
2、一个西瓜重4.86千克,一个哈密瓜重3.5千克。一个西瓜比一个哈密瓜重多多少千克?
二小数一步乘除法应用题1一种毛线每千克48.36元,买3千克应付多少元?买0.6千克呢?
2、一个养蚕专业组养春蚕21张,一共产茧1240千克。平均每张大约产茧多少千克?
三、含有三个已知条件的两步计算应用题1、小红看一本故事书,看了5天,每天看12页,还有38页没有看。这本书一共有多少页?(画一画线段图)
2、食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克?
3、民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发?
四、含有两个已知条件的两步计算应用题
1、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔?
2、一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍?
五、连乘应用题
1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)
2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?
1.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
2. 塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
3.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件?
4. 水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
5.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
6. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
7.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
8. 筑一条长6.4千米的公路,前3个月平均每月筑1.2千米,剩下的每月修1.4千米,还要几个月完成?
9.小明用10.2元买文具,买了6支铅笔,每支0.45元,余下的钱买圆珠笔,每支2.5元,可以买多少支?
10. 服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后。每套节约用布0.3米,原来用的布现在可做西服多少套?
11.一本故事书,原来每页排576字,排了25页。再版时字改小了,只需排18页。现在每页比原来多排多少个字?
12. 一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。甲、乙两地的铁路长多少千米?
13.两个工程队同时合开一条1500米的隧道,甲工程队在一端开工,每天挖14米,乙工程队在另一端开工,每天挖16米,多少天后隧道可以挖通?
14. 甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务?
15.小明和小强放学后在学校门口向相反的方向行走,小明每分钟走70米,小强每分钟走68米,5分钟后两人相距多少米?
16、 甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。货车开出几小时后与客车相遇?
五年级数学应用题练习(二)
班别: 姓名: 成绩:
1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?
2、小明买了6支铅笔和4本练习本,每本练习本0.68元,每支铅笔0.24元。小明付出5元钱,应找回多少元?
3、甲、乙两列火车同时从两地相对开出,甲火车每小时行使80千米,乙火车每小时行使70千米,开出12小时后两车还相距110千米,两地相距有多少千米?
4、光明造纸厂生产一批新闻纸,原计划28天完成,每天需生产12.5吨。施加提前3天完成,实际每天比原计划多生产多少吨?
5、李师傅生产一 批零件,前3天生产零件126件,照这样计算,再生产12天完成生产任务。这批零件共有多少件?
6、化肥厂计划用30天生产化肥84吨,实际每天比计划多生产0.2吨,实际比计划提前几天完成任务?
7、加工一批服装,每天加工300套,16天可以完成,
(1) 如果每天加工400套,提前几天完成?
(2) 如果每天多加工20套,几天可以完成?
(3) 如果要提前5天完成,每天要加工多少套?
8、某汽车厂计划全年生产汽车16800台,结果提前2个月就完成了全年的生产任务。照这样的速度,全年可生产汽车多少台?
9、新丰农机厂一个车间加工2480个零件。原来每天加工100个,工作20天后,改为每天加工120个。这样再加工几天就可以完成任务?
10、一个服装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做600套这种服装所用的布,现在可以做多少套?
11、小红买了练习本和生字本各3本,一本练习本0.36元,一本生字本0.32元,小红买生字本比买练习本少用多少元?
12、同学抬水浇树。三年级浇45棵,三年级比四年级少浇10棵,四年级是五年纪浇的棵数的一半。五年级比三年纪多浇多少棵?
13、两个工程队合开一条隧道,各从一端开凿,第一队每天开12.6米,第二队每天开14.4米,第一队开凿5天后,第二队才加入,再过21天隧道终于打通。
(1)这条隧道长多少千米?
(2)打通时两队各开凿了多少米?
14、小汽车每小时行63千米,小汽车的速度是载重汽车的1.4倍。它们从相距270千米的两地同时开出,相向行驶。
(1) 经过几小时相遇?
(2) 相遇时两车各行了多少千米?
(3) 如果出发时是8时15分,相遇时是几时几分?