⑴ 谁有小学一年级的钟表练习题,要带图的。谢谢!
一、写出下面钟面的时间。(32分)
1、
----------- ____________
___________ ____________
_____________ ____________
_____________ ____________
2、(8分)
:
:
:
:
3、(8分)
1、
二、(8分)
三、我会连。(8分)ww w.xkb 1.com
10:20 12:05 7:15 8:30
⑵ 小学一年级数学如何制作漂亮的钟表
可以去网络图片找下可爱的卡通图片做表面啊~用彩色卡纸剪好贴起来,还可以跟小朋友一起做,锻炼动手能力~
⑶ 小学一年级认识钟表习题
三、填空。
1.时针从一个数走到下一个数的时间是( ),分针走一小格的时间是( ),分针走一大格的时间是( )。
2.时针走一大格,分针正好走( )小格,也就是( )分,所以说1时=( )分。
3.时针从“2”走到“5”走了( )小时。
分针从“2”走到“5”走了( )分钟。
四、填上合适的时间单位。
1.一节课的时间是40()。
2.小学生每天在校时间是6()。
3.看一场电影的时间是2()。
4.李明从家走到学校要15()。
一、填空
1、钟面上有( )个数字,( )针和( )针。
2、分针指向12,时针指向3就是( )。
分针指向6,时针指在3和4中间就是( )。
分针指向5,时针指在8和9之间是( )。
3、( )时整,时针和分针成一条直线;
( )时整,分针和时针重合。
4、现在是11时,再过2时是( )时。
三、按时间给钟面画时针和分针
5时20分 9时15分 10时半 18时36分 12时25分
觉得是题目好,就顶一下。由于有些图片很难上传,给不了你了。
⑷ 小学一年级数学题目问一小时前是几点 有三个圆钟表 第一个是整十二点 第二个是整七点 第三个是整十一点
就是钟面上的时间倒回1小时的时间。
第一个是:11时或11:00
第二个是:6时或6:00
第三个是:10时或10:00
注:我们口头上说的几“点”,标准应说“时”。
⑸ 小学一年级数学关于钟表的问题
认识钟表(整时和半时)说课
一、明确内容,说教材
小明的一天(认识整时和半时)是北师大版小学数学一年级(上册)第八单元《认钟表》的第一课时,是以学生的生活经验为基础进行教学的,主要是让学生知道钟表上的整时和半时的表示方法。通过这部分内容的学习,为以后学习有关时间的知识打下坚实的基础。
基于以上认识,我认为本节课的教学目标应确定为:
1、知识技能性目标:
(1)结合生活经验,认识钟面,学会认读整时和半时。
(2)培养学生初步的观察、分析、推理的能力。
2、过程性目标:
(1)通过拨表针、观察等实践活动,让学生体验数学与日常生活的密切联系,体会到学习的乐趣,提高学习数学的乐趣,建立学好数学的信念。
(2)通过操作、观察、分析、推理等活动,培养学生主动参与探究的精神。
(3)能用所学知识,合理安排自己的时间,做时间的主人。
3、情感性目标:使学生初步建立时间观念,教育学生要养成珍惜和遵守时间的好习惯。
教学重点和难点:
(1)教学重点:会认读整时和半时。
(2)教学难点:在钟面上拨整时和半时。
二、发挥主导,说教法
对刚进学校的学生来说,在他们的生活中已经积累了一定的认识钟表的经验,而这些经验恰恰可以作为学生学习的起点,使课堂的学习活动成为他们原有生活经验的总结升华。依据《数学课程标准》(实验稿)“变注重知识获得的结果为知识获得的过程”的教育理念,以学生的发展为立足点,以自主探究为主线,采用多媒体辅助教学,运用联系生活、激发兴趣,自主探究、合作交流,适时评价、激励创新等方法,让学生全面、全程、全心地参与到每一个教学环节中来,充分调动学生学习积极性。
1、联系生活、激发兴趣。教师充分利用学生已有的生活经验,创设“与小明交朋友”这一生活情境,引导学生学习数学知识,解决数学问题,从而形象地提示出数学源于生活,并与生活紧密联系的道理。
2、自主探究,合作交流。教师引导学生利用已有的知识经验,自主探索,在与小组同学合作交流中主动地获取知识,从而培养学生自主学习的意识、敢于创新的意识。
3、适时评价,激励创新。及时发现学生的点滴进步和思维的闪光点,适时给予激励、评价,架起师生间情感交流的桥梁,使学生在学习的过程中,不断体验到愉悦感、成功感,从而进行创新性学习。
三、确定主体,说学法
1、观察辨析法:观察“小明的一天”的生活情境图,发现整时和半时的区别,培养学生运用对比分析、区分异同的方法进行学习。
2、小组合作法:在教师的引导下,围绕中心问题,展开同桌交流、小组交流,培养合作学习的精神。
3、动手操作法:指导学生动手拨钟表,充分发挥学具的启智作用,进一步体会整时和半时的区别。
四、自主合作,说程序
小学生思维的发展是从具体思维向抽象思维过度的。为了使本节课教学内容能化静态为动态,使学生的知识和能力同步发展,我对本节课的教学过程作如下设计:
(一)课前,师生之间围绕时间这个主题进行聊天;上课伊始,通过创设“与小明交朋友”这一生活情境导入新课。
(二)在新课教学中,我分三个层次进行。
1、初次认读整时和半时。直接呈现“小明的一天”的生活情境图,让学生来认一认,说一说。
2、认识钟面。教师:钟面上有些什么?把你知道的教给小组中的其他同学。比一比,看哪位小老师当得最合格。学生开展四人一小组活动,然后进行全班交流,教师在此基础上进行小结。
3、再次认读整时和半时。小组合作再一次认读整时和半时,发现整时和半时的区别。
教学设想:这样开展教学,学生在同桌交流、小组交流、全班交流的过程中自然而然地将自己的生活经验提升为系统的数学知识既可以省略简单的重复现象,又能增加学生在课堂发挥自己潜能的机会。整个活动学生始终在积极参与,而不是被动接受,但认识是深刻的。
(三)巩固练习:“找朋友”、“拨一拨”。
教学设想:学习生活中的数学是课标精神的体现。设计一些生活性、趣味性的题目,对知识进行强化、巩固,为学生充分提供了一个广泛的、轻松的思维空间和创造空间。
(四)概括总结。对所学知识进行总结,同时对学生进行思想品德教育,使孩子们学会合理安排时间,做时间的小主人。
(五)拓展延伸。旨在唤起学生“用数学”的意识,再次让学生体验与感受到生活中处处有数学。
⑹ 谁有一年级数学认识时钟的练习题
小学六年级圆的周长练习 姓名:
一、填空题
1.时钟的分针转动一周形成的图形是( ).
2.从( )到( )任意一点的线段叫半径.
3.通过( )并且( )都在( )的线段叫做直径.
4.在同一个圆里,所有的半径( ),所有的( )也都相等,直径等于半径的( ).
5.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是( )厘米.
6.圆的直径是6厘米,它的周长是( ),4.圆的半径是1分米,它的周长是( )
7.圆的周长是25.12分米,它的直径是( )半径是( )。
8.甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的( ),
二、填表
r
5cm
12m
d
6cm
c
18.84dm
三、求下列各圆的周长.(单位:厘米)
四、应用题
1.一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条?
2.一只大钟,时针长5分米,分针长7分米,它们的针尖转动一周各行多少距离?
3.儿童公园有一个直径10米的圆形金鱼池,在金鱼池外0.5米处要装一个圈不锈钢护栏,这个护栏的长度最少要多少米?
4.一辆自行车轮胎的外直径是70厘米,如果每分转120周,一小时能行多少千米? (最后结果保留两位小数)
5.一辆自行车的车轮半径是40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?
小学数学公式:
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
回答者: awmcyun - 初入江湖 二级 4-16 12:50
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。通过对圆柱和圆锥的认识,牢记圆柱的表面积,圆柱的体积和圆锥的体积。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
正方形的面积为边长的平方,周长为4*边长
长方形的面积为长乘宽,周长为2*(长+宽)
平行四边形的面积为长乘高,周长为2×临边的和
梯形的面积为(上底+下底)乘高÷2,周长为各边之和
三角形的面积为底乘高除以2,周长为各边之和
圆柱的面积为侧面积加上底面两圆面积之和,等于底面周长乘以高加2πr^2
圆锥的面积为扇形面积加底面积,等于底面周长乘以母线长除以2,或nπR^2除以360
体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
比
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
⑺ 小学一年级钟表题有没有
小学一年级的钟表:要求学生会认识时针和分针。能看着钟面说出时间,或根据时间会拨动钟面。只要知道整点或半点就可以了。