导航:首页 > 小学年级 > 小学六年级分数除法应用题

小学六年级分数除法应用题

发布时间:2020-11-28 09:21:30

A. 十道分数除法应用题 六年级的

1、一项工程 甲乙合做天完成,乙独做10天完成,甲独做要几天完成?

甲的工作效率=1/6-1/10=1/15
甲独做需要1/(1/15)=15天完成
2、一项工作,甲5小时先完成4分之1,乙6小时又完成剩下任务的一半,最后余下的工作有甲乙合作,还需要多长时间能完成?
甲的工作效率=(1/4)/5=1/20
乙完成(1-1/4)×1/2=3/8
乙的工作效率=(3/8)/6=1/16
甲乙的工作效率和=1/20+1/16=9/80
此时还有1-1/4-3/8=3/8没有完成
还需要(3/8)/(9/80)=10/3小时
3、工程队30天完成一项工程,先由18人做,12天完成了工程的3/1,如果按时完成还要增加多少人?
每个人的工作效率=(1/3)/(12×18)=1/648
按时完成,还需要做30-12=18天
按时完成需要的人员(1-1/3)/(1/648×18)=24人
需要增加24-18=6人
4、甲乙两人加工一批零件,甲先加工1.5小时,乙再加工,完成任务时,甲完成这批零件的八分之五.已知甲乙的共效比是3:2.问:甲单独加工完成着批零件需多少小时?
甲乙工效比=3:2
也就是工作量之比=3:2
乙完成的是甲的2/3
乙完成(1-5/8)=3/8
那么甲和乙一起工作时,完成的工作量=(3/8)/(2/3)=9/16
所以甲单独完成需要1.5/(5/8-9/16)=1.5/(1/16)=24小时
5、一项工程,甲、乙、丙三人合作需要13天,如果丙休息2天,乙要多做4天,或者由甲、乙合作多做1天.问:这项工程由甲单独做需要多少天?
丙做2天,乙要做4天
也就是说并做1天乙要做2天
那么丙13天的工作量乙要2×13=26天完成
乙做4天相当于甲乙合作1天
也就是乙做3天等于甲做1天
设甲单独完成需要a天
那么乙单独做需要3a天
丙单独做需要3a/2天
根据题意
1/a+1/3a+1/(3a/2)=1/13
1/a(1+1/3+2/3)=1/13
1/a×2=1/13
a=26
甲单独做需要26天
算术法:丙做13天相当于乙做26天
乙做13+26=39天相当于甲做39/3=13天
所以甲单独完成需要13+13=26天
7、甲、乙两人生产一批零件,甲、乙工作效率的比是2:1,两人共同生产了3天后,剩下的由乙单独生产2天就全部完成了生产任务,这时甲比乙多生产了14个零件,这批零件共有多少个?
将乙的工作效率看作单位1
那么甲的工作效率为2
乙2天完成1×2=2
乙一共生产1×(3+2)=5
甲一共生产2×3=6
所以乙的工作效率=14/(6-5)=14个/天
甲的工作效率=14×2=28个/天
一共有零件28×3+14×5=154个
或者设甲乙的工作效率分别为2a个/天,a个/天
2a×3-(3+2)a=14
6a-5a=14
a=14
一共有零件28×3+14×5=154个
8、一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?
甲乙的工作效率和=1/20
甲乙的工作时间比=1:2
那么甲乙的工作效率比=2:1
所以甲的工作效率=1/20×2/3=1/30
乙的工作效率=1/20×1/3=1/60
甲单独完成需要1/(1/30)=30天
乙单独完成需要1/(1/60)=60天
甲单独完成需要1000×30=30000元
乙单独完成需要550×60=33000元
甲乙合作完成需要(1000+550)×20=31000元
很明显
甲单独完成需要的钱数最少
选择甲,需要付30000元工程费.
9、一批零件,甲乙两人合做5.5天可以超额完成这批零件的0.1,现在先由甲做2天,后由后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?
将全部零件看作单位1
那么甲乙的工作效率和=(1+0.1)/5.5=1/5
整个过程是甲工作2+2=4天
乙工作2+4=6天
相当于甲乙合作4天,完成1/5×4=4/5
那么乙单独做6-4=2天完成1-4/5=1/5
所以乙单独完成需要2/(1/5)=10天
10、有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成.现由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成,问规定日期是多少天?
甲做3天相当于乙做5天
甲乙的工作效率之比=5:3
那么甲乙完成时间之比=3:5
所以甲完成用的时间是乙的3/5
所以乙单独完成需要5/(1-3/5)=5/(2/5)=12.5天
规定时间=12.5-5=7.5天

B. 六年级分数除法应用题及答案

光明小学低年级有240人,中年级人数是低年级的7/9,高年纪人数是中年级的2/3,高年纪有多少人??
240×7/9÷2/3
=240×7/9×3/2
=280(人)

列式计算
4/3的6/7比它的1/2多多少?
4/3×6/7-4/3×1/2
=8/7-2/3
=10/21

小明和小华共有邮票108枚,小明的邮票数是小华的五分之四,两人各有多少枚邮票
小明的是小华的4/5很明显把小华的邮票看成了单位1.小明的份数就是4/5。先把单位1算出来就行了,而求单位1就是对应的量除以对应的份数得到单位1.而这里对应的量就是小明和小华的108,对应的份数就是1+4/5=9/5.所以单位1也就是小华的邮票就是108除以(1+9/5)=60枚。而小明的就是108-60=48枚

六一班原有学生60人,男生人数是全班的十二分之七,转来几名女生后,这时男生人数是全班的九分之五。又转来几名女生?
原来的男生数: 60 x 7/12=35人
转来女生后的全班人数: 35 除以 5/9= 63人

所以转来的女生数: 63-60=3人4、.一个商店为了回收资金,吧甲乙两种商品均以480元卖出,已知加商品赚了20%,乙商品亏了20%,则该商店的盈亏结果是多少?
两种商品的成本价格是
480/(1+20%)+480/(1-20%)
=400+600
=1000元
1000-480*2=40元
亏损40元
5、两列车同时从甲乙两地相对开出,快车每小时行150千米,慢车每小时行90千米,它们在距中点240千米处相遇,甲乙相距多少千米?
解:快车比慢车每小时多行150-90=60千米
那么快车比慢车一共多行240×2=480千米
相遇时间=480/60=8小时
甲乙距离=(150+90)×8=1920千米
6、公园有个圆形水池,大爷每天绕着水池跑20圈,如果水池半径38米,李大爷每天早晨大约跑多少米?
解:每天跑2×3.14×38×20=4772.8米
7、新研制压路机解决我国高速公路一道难题,前轮半径是1.5米,每分钟转8圈。压路机每分钟大约前进多少米
解:前进2×3.14×1.5×8=75.36米
8、商店有红气球和黄气球共360个,红气球卖出百分之二十五,黄气球卖出24个,剩下的红气球和黄气球正好相等,原来红气球和黄汽球各有多少?
解:卖出黄汽球24个,还剩下360-24=336个
此时将黄汽球看作单位1,那么红气球有1/(1-25%)=4/3
原来黄汽球有24+336/(1+4/3)=24+144=168个
原来红汽球有360-168=192个
9、某仓库原有一批货物,运出五分之二后又运进8400吨,这时比原来增加了百分之三十,求仓库原有货物多少吨?
原来看作单位1
运出2/5后还剩下1-2/5=3/5
那么原来有8400/(1+30%-3/5)=8400/0.7=12000吨

C. 六年级数学分数除法应用题练习题

同学们要参加运动会入场式,要进行队列*练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅&127;,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
方阵的基本特点:
(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的 人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;
四周人(或物)数=[每边人(或物)数-1]×4
每边人(或物)数=四周人(或物)数÷4+1
(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数
(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4

例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?
分析:根据四周人数与每边人数的关系可知:
每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,&127;那么这个方阵队列的总人数就可以求了。
解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)
(2)整个方阵共有学生人数:6×6=36(人)
答:方阵最外层每边的人数是6人,这个方阵共有36人。

例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?&127;摆这个三层空心方阵共用了多少个棋子?
分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,&127;再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。
解:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)
(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)
答:这个方阵最里层一周有40个棋子;摆这个空心方阵共用144个棋子。

例3.玲玲家的花园中,有一个如下图那样,由四个大小相同的小等边三角形组成的一个大三角形花坛,玲玲在这个花坛上种了若干棵鸡冠花,已知每个小三角形每边上种鸡冠花5棵,问大三角形的一周有鸡冠花多少棵?&127;玲玲一共种鸡冠花多少棵?
分析:(1)由图可知大三角形的一条边是由两条小三角形的边组成的,&127;而在大三角形一条边的中间那棵花,是两条小三角形的边所共用的,所以如果小三角形每边种花5棵,那么大三角形每边上种花的棵数就是5×2-1=&127;9棵了,又由于大三角形三个顶点上的3棵花,都是大三角形的两条边所共用的,&127;所以大三角形一周种花的棵数等于大三角形三边上种花棵数的和减去三个顶点上重复计算的3棵花,即:9×3-3=24,就是大三角形一周种花的棵数。
(2)三角形各条边上种鸡冠花棵数的总和,&127;等于里边小三角形一周上种花的棵数,加上大三角形一周种花的棵数,再减去重复计算的3棵花(因为里边小三角形的三个顶点上的三棵花,&127;也分别是外边大三角形每条边上的一棵花)。
解:(1)大三角形一周上种花的棵数是:(5×2-1)×3-3=24(棵)
(2)小三角形一周种鸡冠花的棵数是:(5-1)×3=12(棵)
(3)玲玲一共种鸡冠花的棵数是:24+12-3=33(棵)
答:大三角形一周种鸡冠花24棵;玲玲一共种鸡冠花33棵。

例4.五年级学生分成两队参加学校广播*比赛,他们排成甲乙两个方阵,其中甲方阵每边的人数等于8,如果两队合并,可以另排成一个空心的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好填满丙方阵的空心五年级参加广播*比赛的一共有多少人?
分析:若只排列一个乙方阵,则多余的人数为(即甲方阵的人数)8×8=64(人),排列一个实心的丙方阵,不足的人数是:8×8=64(人)假设丙方阵为实心方阵,则乙多的人数是:8×8+8×8=128(人),又根据方阵扩展一层,每边增加2人,丙方阵比乙方阵的外边多4人,丙方阵多于乙方阵的层数是4÷2=2(层),方阵扩展2层,需要增加128人,则方阵最外层的人数是(128+2×4)÷2=&127;68(人),丙方阵的总人数18×18-8×8=260(人)
解:(1)假设丙方阵为实心方阵,则方阵最外层的人数是:(8×8+8×8+2×4)÷2=68(人)
(2)丙方阵最外层每边的人数是:68÷4+1=18(人)
(3)空心丙方阵的总人数:18×18-8×8=324-64=260(人)
答:五年级参加广播*比赛的一共有260人。

例5.有杨树和柳树以隔株相间的种法,种成7行7列的方阵,问这个方阵最外一层有杨树和柳树各多少棵?方阵中共有杨树,柳树各多少棵?
分析:根据已知条件柳树和杨树的种法有如下两种,假设黑点表示杨树,&127;白点表示柳树观察图(1)(2)不管是柳树种在方阵最外层的角上还是杨树种在方阵最外层的角上,方阵中除最里边一层外其它层杨树和柳树都是相同的。因而杨树和柳树的棵数相等,即最外层杨,柳树分别为(7-1)×4÷2=12(棵)。
当柳树种在方阵最外层的角上时,最内层的一棵是柳树;当杨树种在方阵最外层的角上时,最内层的一棵是杨树,即在方阵中,杨树和柳树总数相差1棵。
解:(1)最外层杨柳树的棵数分别为:(7-1)×4÷2=12(棵)
(2)当杨树种在最外层角上时,杨树比柳树多1棵:
杨树:(7×7+1)÷2=25(棵)
柳树:7×7-25=24(棵)
(3)当柳树种在最外层角上时,柳树比杨树多1树
柳树(7×7+1)÷2=25(棵)
杨树7×7-25=24(棵)
答:在图(1)(2)两种方法中,方阵最外层都有杨树12棵,柳树12棵,方阵中总共有杨树25棵,柳树12棵,方阵中总共有杨树25棵,柳树24棵,或者有杨树24棵,柳树25棵。

D. 小学六年级数学分数除法应用题。

六年级与五年级人数的比是:3/4:4/5=15:16 (当两个数部分版数相等时,这两个数的比等于两部分数的反比)权
六年级有:930*15/(15+16)=450人
五年级有:930*16/(15+16)=480人
解法二:
解设五年级学生有X人,则六年级学生有(930-X)人
3/4X=4/5(930-X)
3/4X=744-4/5X
(4/5+3/4)X=744
X=480
930-X=930-480=450

E. 小学六年级的分数除法应用题详细解说

一步计算的分数乘除法应用题可根据“求一个数的几分之几是多少”和“已知一个数的几方之几是多少,求这个数”来解答。
两步计算的应用题的解题关键是先确定单位“1”,既找出标准量,接着寻找具体数量的对应分率。在列式时,首先看表示单位1的数量是否知道,如果表示单位“1”的数量是已知的,则该题用乘法计算,否则该题用除法计算。
例如:某肥皂厂九月份生产肥皂35万箱,十月份生产的肥皂比九月份多2/7,十月份生产肥皂多少万箱?
分析:“十月份生产的肥皂比九月份多2/7”表示把九月份生产的肥皂看作单位“1”,十月份生产的肥皂就是九月份的(1+2/7),表示单位“1”的数量是已知的,所以用乘法计算,即:35*(1+2/7)。
又如:世界上最高的动物是长劲鹿。有一只长劲鹿高5米,比一头大象还要高2/3,这头象高多少米?
分析:长劲鹿“比一头大像还要高2/3”表示把大象看作单位“1”,长劲鹿的高度是大象的(1+2/3),即5米的对应分率为(1+2/3),表示单位“1”的数量未知,所以用除法计算,即5/(1+2/3)。
在解答分数乘除法应用题时还应注意一题多解,特别要注意引入方程解法。传统的分数除法应用题教学只讲算术解法,学生难以理解和掌握,往往死记结语,费时多,效果差。由于用方程解答两步应用题时,仍强调先想未知量相当于单位“1”的几分之几,来沟通算术解法和方程解法的联系。在教学中有的教师容易错误地把方程解法作为过渡到算术解法的一种手段,最后仍以掌握算术解法为主,使学生容易忽视方程解法。这样不利于发展学生的思维能力,也不能为进一步学习打下良好的基础。在解答分数应用题时,对于含有“已知一个数的几分之几是多少,求这个数”与含有“求这个数的几分之几是多少的两步”应用题的解法相对应,先按照列方程解整应用题的方法,找出数量间的相等关系,列出方程并求解。在此基础上出现算术解法,并且注意说明算术解法与方程解法的联系与区别。
例如:小红家买来一袋大米,吃了5/8,还剩15千克。买来大米多少千克?
分析:这道题应把买来大米的重量看作单位“1”。买来大米的重量不知道,可以用X代替,列方程解答。等量关系为:买来大米的重要 — 吃了的重要 剩下的重量

F. 分数除法应用题 六年级的

(1)大豆的出油率是54%,用40千克大豆可以榨油多少千克?
(2)杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树?
(3)一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看?
(4)一块地用40%种冬瓜,其余的按3:2分别种西红柿和茄子,已知茄子种了0.6公顷,这块地有多少公顷?
(5)小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页?
(6)一堆煤,用去了20吨,余下的是用去的25%,这一堆煤一共多少吨?
(7)青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷?
(8)某养猪场,今年养猪400头,比去年多养25%,去年养猪多少头?
(9)育华小学六年级有学生120人,其中70人已达到国家体育锻炼标准,要使六年级“达标率”达到85%,还应有多少人达标?
(10)一条绳子,剪去全长的60%,还剩下12米,原来绳子长多少米?
1. 一个食堂三月份烧煤5吨,四月份烧煤4.8吨.四月份烧煤比三月份节约了百分之几?
2. 12名工人0.4小时可以生产零件72个,照这样计算,15名工人生产180个零件,需要多少小时?
3. 一个工厂由于采用了新工艺,现在每件产品的成本是37.4元,比原来降低了15%,原来每件成本是多少元?
4. 一个水池可容水84吨,有两个注水管注水,单开甲管8小时可将水池注满,单开乙管6小时可注满.现在同时打开两个水管,注满水池时,乙管注入水池多少吨水?
5. 李强体重33千克,比去年增加10%,去年他的体重是多少千克?
做5天,余下的由甲乙两队合做,还需几天完成?
6. 挖一条水渠长1800米,7天完成840米,照这样速度,完成这项工程还要多少天?(用两种方法解答)
7. 修一条路,甲队独修8天完成,乙队独修10天完成,甲队独修了3天后,剩下的甲乙两队合修,还需要几天完成?
8. 一批货物,计划每天运30吨,按期完成任务,如果每天运的吨数增加到50吨,6天运完,这样可以比原计划提前多少天完成任务?(列综合算式解答)
9. 甲乙两辆汽车同时从相距270千米的两地相对开出,经过1小时30分后两车相遇.已知乙汽车与甲汽车的速度比是7:8,求这两辆汽车每小时各行了多少千米?
10. 第一机床厂,今年生产机床891台,比去年增产10%,今年比去年增产多少台?
11. 修一条水渠,4天修了380米.照这样计算,再修7天可以完成,这条水渠长多少米?
12. 4辆大汽车5次运煤80吨,3辆小汽车8次运煤72吨,今有煤350吨,一辆大汽车和一辆小汽车同时运需要几次运完?
13. 钢铁厂今年第二季度平均每月生产钢50万吨,比第一季度平均每月增产钢10万吨,今年上半年平均每月生产钢多少万吨?
14. 小王骑车两天共走144千米,第一天比第二天多走40%,这两天各走多少千米?
15. 一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,问乙中途离开了几天?
16. 育才学校有学生1250人,其中女生占48%,男生有多少人?
17. 一个圆柱体的汽油桶,直径54厘米,高8分米,所盛汽油是多少立方分米?1立方分米汽油约重0.7千克,一桶汽油大约重多少千克?(得数保留整千克数)
18. 甲乙两地相距1800千米,一架飞机从甲地飞往乙地,每小时飞行360千米,返回时顺风,比去时少用1小时.往返平均每小时飞行多少千米?
19. 某校操场长75米,宽45米,要在操场上垫5厘米厚的一层黄土,共垫黄土多少立方米?
20. 田村养猪场要建一个圆柱体沼气池,底面周长6.28米,深3.5米,体积是多少立方米?(得数保留整数)
三、列式计算
(1)两个因数的积是14.4,其中一个因数是5,另一个因数是多少?
(2) 24.5比64.5除以5的商多多少?
(3)比15.7少4.3的数加上3.54,结果是多少?
(4)甲数是48.3,比乙数多12.7,两数和是多少?

G. 六年级上册分数除法应用题5道

1.设男生人数为x,则女生人数为4/5x 所以x+4/5x=450 x=250
2.设共有x本书 已发的书占未发书的四分之一 则已发的书为1/5x
已发的书占未发书的三分之二 则已发的书为2/5x
所以 2/5x-1/5x=9 x=45
3.设这根电线长x米 所以(x-20)-5/7x=4 x=84
4.设女生有x人 5/2x-x=120 x=80
5.设共用了3x吨黄沙 则石子和水泥分别用了4x吨、2x吨
黄沙用完了 所以 3x=5 x=5/3
所以石子不够5/3吨,水泥剩余5/3吨

阅读全文

与小学六年级分数除法应用题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99