导航:首页 > 小学年级 > 小学五年级题例

小学五年级题例

发布时间:2021-03-14 05:45:23

Ⅰ 锦州小学五年级题例答案

把题发上来还能帮你看看,手边没题呀。。。

Ⅱ 小学五年级奥数题及答案25道!!

奥赛专题 -- 称球问题
〔专题介绍〕称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。
〔经典例题〕例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
例2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。

练习 有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?

奥赛专题 -- 鸡兔同笼问题
[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.

参考资料:小数专业网
过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。

2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。

3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。

和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。

列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。

奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。

偶数与整数的积是偶数。

性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。

奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。
思考:1.能用抽屉原理2,直接得到结果吗?
2.把题中的要求改为3双不同色袜子,至少应取出多少只?
3.把题中的要求改为3双同色袜子,又如何?
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
【分析与解】从最“不利”的取出情况入手。
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。
故总共至少应取出10+5=15个球,才能符合要求。
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。
奥赛专题 -- 还原问题
【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?
【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)
余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)
用同样道理可算出“存款的一半”和“原有存款”。综合算式是:
[(1250+100)×2+50]×2=5500(元)
还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又
从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。
提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。
奥赛专题 -- 鸡兔同笼问题
例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。

Ⅲ 举几个不同的小学五年级间算题(例题)

自己去找把!

Ⅳ 小学五年级奥数题30道要答案算式

五年级数学思维训练题

1、用3个大瓶和5个小瓶可装墨水5.6千克,用一个大瓶和3个小瓶可装墨水2.4千克。那么用1个大瓶和2个小瓶可装墨水( )千克。
加在一起,4大8小装5.6+2.4=8,所以,1大2小装8/4=2千克

2、a,b,c,d四位同学参加奥数测试,a得74分,b得86分,c得96分,四人的平均成绩正好是整数。d可能得几分?
74/4余2, 86/4余2, 96/4是整数, 2+2=4, 能被4整除。所以,d分数应该是4的倍数,4n (n=0,1,2。。。25)

3、□×5÷3×9+11=1991中,□里应填入的数字是( )。
(1991-11) ÷9×3÷5=1980÷15=132

4、有红色小旗2面,蓝色小旗1面,这些旗大小和形状都相同,把这些小旗挂在旗杆上做出各种信号,每面旗以一定的间隔排列。利用这些旗能表示出多少种不同的信号。
只有蓝色:3
只有一面红色:3
只有两面红色:3
1红1蓝:3*2=6
2红1蓝:3
3*6=18

5、一筐苹果,如果平分给4小朋友多出3个苹果;如果平分给5个小朋友又多出4个苹果;如果平分给6小朋友则又少1个苹果。这筐苹果最少有( )个。
相当于4n-1, 5m-1, 6x-1
找4,5,6的最小公倍数,再-1就是了
4,5,6最小公倍数60,所以苹果最少有60-1=59个

6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车速度每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发几小时后两车相遇?
货车到达乙地时,走了360/60=6小时,再过0.5小时,客车共走6.5*40=260千米,距离乙地360-260=100千米,再过100/(40+60)=1小时两车相遇,此时距从甲地出发6+0.5+1=7.5小时。

7、一个数除以3余2,除以4余3,除以5余4,这个数最小是( )
同第5题,求3,4,5最小公倍数再-1。 3,4,5最小公倍数是60, 60-1=59

8、绿化工人在一段公路的两侧每隔4米栽一棵树,一共栽了74棵。现在要改成每隔6米栽一棵树,不用移栽的树有多少棵?
每侧74/2=37棵
每侧(37-1)*4=144米
4和6最小公倍数是12,所以0,12,24。。。。144米的不用移栽,共13棵,需要移栽的是37-13=24棵
两侧一共需要移栽24*2=48棵

9、滨海县实验小学五(4)班学生去野炊。用餐时,每2人一个饭碗,每3人一个菜碗,每4人一个汤碗,一共用了65个碗。这个班有多少个学生?
2,3,4最小公倍数是12,每12人用6饭碗、4菜碗、3汤碗,共13个碗。
65/13=5组,所以学生数5*12=60人

10、某县内电话话费计费是这样的:0~3分钟0.2元,超过3分钟,超过部分按每分钟0.1元计(不足1分钟按1分钟计),小军打了县内电话计时7分35秒,算一算这个电话的话费。
0.2+(8-3)*0.1=0.7元

Ⅳ 关于几道小学五年级数学题(必有例式)

1.由于小光最后喝光了,他喝的橙汁总量为1杯,他加了三次水,每次加满,加的水填补的是橙汁的空隙,第四次喝的时候仍有橙汁,说明水没有橙汁多
2.设绿的长为10,则蓝的为11,红的为44,显然,红的最长
3.即1/12
2/12
3/12
4/12
5/12
6/12
7/12
1/12
7/12
1/3
1/6
1/4
1/2
5/12
1/6
7/12
1/12
1/4
1/3
1/2
5/12
1/12
1/2
7/12
1/6
1/4
5/12
1/3

Ⅵ 小学五年级计算题,需要50道

1. (25%-695%-12%)*36
2. 3/4*3/5+3/4*2/5
3. (1-1/4+8/9)/7/9
4 2/3+1/6/3/24+2/21
5 1*8/15*3/5
6 10-3/4/9/10-1/6
7 [(1/3+1/2)/5/6-1/3]/1/7
8 2/3/5+3/5/2+3/4
9 1/[(2-2/3/1/2)]*2/5
10 3^2*3.25678
11 3^3-5
12 4^2-34%
13 3.25-315%
14 7^3+445%
15 12+5268.32-2569
16 123+456-52*8
17 45%+6325
18 1/2+1/3+1/4
19 789+456-78
20 45%+54%-36%
一 、填空:20%

1. 2. 5小时=( )小时( )分 5060平方分米=( )平方米

2. 24的约数有( ),把24分解质因数是( )

3. 分数单位是 1/8的最大真分数是( ),最小假分数是( )。

4. 一个最简分数的分子是最小的质数,分母是合数,这个分数最大是( ),如果再加上( )个这样的分数单位,就得到1。

5. 把一个长、宽、高分别是5分米,3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是( )平方分米。

6. 用一根52厘米长的铁丝,恰好可以焊成一个长方体框架。框架长6厘米、宽4厘米、高( )厘米。

7. A=2×3×5,B=3×5×5,A和B的最大公约数是( ),最小公倍数是( )。

8. 正方体的棱长扩大3倍,它的表面积扩大( )倍,它的体积扩大( )倍。

9. 4/9与5/11比较,( )的分数单位大,( )的分数值大。

10. 两个数的最大公约数是8,最小公倍数是48,其中一个数16,另一个数是( )。

二 、选择题(将正确答案的序号填在括号内):20%

1. 下面式子中,是整除的式子是( )

① 4÷8=0.5 ② 39÷3=13 ③ 5. 2÷2. 6=2

2. 在2/3、3/20和7/28中,能化成有限小数的分数有( )

① 3个 ② 2个 ③ 1个

3. 两个质数相乘的积一定是( )

① 奇数 ② 偶数 ③ 合数

4 . A=5B(A 、B都是非零的自然数)下列说法不正确的是( )

① A 和B的最大公约数是A ② A 和B的最小公倍数是A

③ A能被B整除,A含有约数5

5. 在100克的水中加入10克盐,这时盐占盐水的( )

① 1/9 ② 1/10 ③ 1/11

6. 已知a>b,那么2/a与2/b比较( )

① 2/a> 2/b ②2/a < 2/b ③ 无法比较大小

7. 两个数的最大公约数是12,这两个数的公约数的个数有( )

① 2个 ② 4个 ③ 6个

8. 一个长方体被挖掉一小块(如图)下面说法完全正确的是( )

① 体积减少 ,表面积也减少

② 体积减少, 表面积增加

③ 体积减少, 表面积不变

9. 用大小相等的长方形纸,每张长12厘米,宽8厘米。要拼成一个正方形,最小需要这种长方形纸( )。

① 4张 ② 6张 ③ 8张

10、一根6米长的绳子,先截下1/2,再截下1/2米,这时还剩( )

① 5米 ② 5/2米 ③ 0米

三、计算题:28%

1. 求长方体的表面积和体积(单位:分米)4%

a=8 b=5 c=4

2. 脱式计算(能简算要简算)12%

6/7+2/15+1/7+ 13/15 19/21+5/7-3/14

2/3+5/9-2/3+5/9

8/9-(1/4-1/9)- 3/4

3. 求最下列每组数的最大公约数与最小公倍数 4%

24 和36

18、24和40(只求最小公倍数)

4. 文字题 6%

5/9与7/18的和,再减去1/2,结果是多少?

一个数减去7/15与7/30的差,结果是2/3,这个数是多少?(用方程解)

四、作图题 4%

请你用画阴影的方法表示1/2(至少5种)

五、应用题:30%

1. 一块地,其中1/5种玉米,1/6种青菜,其余种西瓜。种西瓜的面积占这块地的几分之几?

2. 某班男生24人,女生20人,男生人数是女生的多少倍?女生人数是男生人数的几分之几?

3. 学生参加环保行动。五年级清运垃圾3/5 吨,比六年级少清运1/8吨。五六年级共清运垃圾多少吨?

4. 一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。它的容积是多少升?
5. 一辆汽车,前3小时共行192千米,后2小时每小时行58千米,这辆汽车的平均速度是多少千米?
(1)鱼缸里有若干条金鱼,其中红金鱼占全部的,黑金鱼占全部的。红金鱼和黑金鱼共占全部金鱼的几分之几?
(2)修路队用三天的时间正好修了全路的一半,第一天修了全路的,第二天修了全路的,第三天修了全路的几分之几?
(3)红星小学修一个长60米、宽45米的长方形操场。先铺10厘米厚的三合土,再铺4厘米厚的煤渣。需要的三合土比煤渣多多少立方米?
(4)做一个无盖的长方体铁皮水槽,长是85厘米,宽和高都是50厘米,至少要用铁皮多少平方分米?
(5)证章厂用一个月的时间加工完一批2008年奥运会纪念章。上半月加工了全部的,下半月比上半月少加工了全部的几分之几?
(6)一个长方体的油箱,长70厘米,宽44厘米,高25厘米。这个油箱最多可盛油多少升?如果每升汽油售价按3.76元计算,加满这样一箱汽油需用多少
1.小明读一本书,前4天平均每天看6.25页,后3天共看24页,小明这一星期平均每天看多少页?
2.下面是某地一天四个时刻的气温,算一算这一天的平均气温
3.一种木箱,长1.2米,宽0.8米,高1米,如果外面四周都刷上油漆,刷油漆的面积是多少?
4.有一种长方体钢材,长2米,横截面是边长为5厘米的正方形,每立方分米钢重7.8千克,这根方钢材重多少千克?

5.有一个养鱼池长18米,宽12米,深3.5米,要在养鱼池各个面上抹一层水泥,防止渗水,如果每平方米用水泥5千克,一共需要水泥多少千克?
6.从一个长为6厘米长方体上截下一个体积是64立方厘米的正方体,原来这个长方体的表面积是多少平方厘米?

7.既能被6整除,又能被9整除的数,最小的是多少?

8.一张长方形纸,长48厘米,宽36厘米。要把这张纸裁成大小相等的正方形纸,而无剩余,正方形的边长最长是多少?
1、五(1)班同学们做操,每8人排一行则多3人,每10人排一行则多3人,这个班至少有学生多少人?

2、小明从学校到少年宫要步行45分钟,小林从学校到少年宫要步行48分钟,他们每人各步行这段路程的几分之几?谁的速度快些?

3、一个长方体蓄水池,从里面量得它的长是4.5米,宽是4米,深是1米,这个蓄水池占地多少平方米?水池里已有水14.4立方米,水深多少米?

4、拖拉机耕一块地,上午耕了这块地的 ,下午耕了这块地的 ,一天共耕了这块地的几分之几?

1. 在38÷19=2 2÷0.1=20这两个算式中.( )能被( )除尽,( )能被( )整除.
2. 把40分解质因数是( ).
3. 6□0能被3和5整除,□里可以填( ).
4. 6和10的最大公约数是( ),最小公倍数是( ).
5. 在1、0.5、2、4、0、、10、11这几个数中,( )是整数,( )是自然数,( )是奇数,( )是偶数,( )是质数,( )是合数.
6. 三个连续自然数的和是18,这三个自然数的最大公约数是( ),最小公倍数是( ).
7. 两个数有共同的质因数2和7,它们的公约数是( ).
8. 写出两个合数,并使它们互质,这两个数是( )和( ).
9. 一个数千位是最小的奇数,万位是最小的合数,十位是最小的质数,其它数位上是0,这个数写作( ),它既是( )又是( )的倍数.
10. 10~20之间的质数有( ),其中( )个位上的数字与十位上的数字交换位置后,仍是一个质数.
11. 把91分解质因数是( )
12. 把78分解质因数.( )
13. 用一个数去除28,42,56正好都能整除,这个数最大是( ).
14. 在括号里填上适当的数.
①11与( )的积是合数
②97与( )的积是质数
③23与( )的积是偶数
④17与( )的积能被3整除
⑤13与( )的积能被5整除
⑥29与( )的积能被2、3整除
⑦37与( )的积能被3、5整除
⑧41与( )的积能被2、3、5整除
1. 10和5这两个数,5能( )10,5是10的( )数,10是5的( )数.
2. 50以内6和8的公倍数有( ).
3. 24的最大约数是( ),最小倍数是( ).
4. 自然数的( )是无限的,所以没有( )的自然数.
5. 10以内质数的和是( ).
6. 一个数的最小倍数是99,这个数是( ),将它分解质因数是( ).
7. 1021至少加上一个整数( )就能被3整除.
8. 自然数a是自然数b的约数,a、b的最大公约数是( ),最小公倍数是( ).
9. 12的约数有( ),其中( )是奇数,( )是偶数,( )是质数,( )是合数.
10. 两个互质数的最小公倍数是143,这两个互质数是( )和( )或( )和( ).
11. 4的倍数:2□,5□,4□0
12. 3的倍数:□60,70□0,310□
13. 甲数能被乙数整除,那么甲数一定能被乙数除尽。( )
14. 填质数:21=□+□=□-□=□×□
15. 使下面算式能整除:(815+□)÷3 (65×□)÷15(□是一位数)
16.121是11的倍数:□÷□; 13是78的约数:□÷□ ;a是50的约数:□÷□; b是a的倍数:□÷□。
1. 求42和70的最大公约数和最小公倍数.
2. 求66和165的最大公约数和最小公倍数.
3. 求13,39和91的最大公约数和最小公倍数.
4. 30,40和60的最小公倍数是它们的最大公约数的多少倍?
5. 求32,48和60的最大公约数和最小公倍数.
6. 分解质因数.28, 50
7. 分解质因数.84,92
1、在0、1、3、0.5、4、8、17、2.6的数中;自然数有( );整数有( );奇数有( );偶数有( );质数有( );合数有( );小数有( );分数有( )。
2.最小的自然数是( );最小的奇数是( );最小的偶数是( );最小的质数是( );最小的合数是( )。
3.即有约数2,又有约数3的最小数是( );既有约数2,又有约数5的最小数是( );既有约数3,又有约数5的最小的数是( )。
4.既不是质数,又不是偶数的最小自然数是( );既是质数;又是偶数的数是( );既是奇数又是质数的最小数是( );既是偶数,又是合数的最小数是( );既不是质数,又不是合数的最小数是( );既是奇数,又是合数的最小的数是( )。
5.能同时被2、3、5整除的两位数是( )。
6.把390分解质因数是(390= )。
7.除以2、5、3余数都是1的数,其中,最小的一个是( )。
8.2、5、10的最大公约数是( ),最小公倍数是( )。
9.甲数除以乙数的商是15,甲乙两数的最大公约数是( );最小公倍数是( )。
10.从0、2、3、5、7五个数中,选四个数组成一个同时能被2、3、5整除的最小的四位数( )。

Ⅶ 小学五年级奥数题,及答案

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案

1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人

2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)

3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90

Ⅷ 小学五年级半命题作文题目有哪些(聚五个以上个例子,越多越好)

假如我是______,( )最珍贵,我喜欢( ),我学会了( ),( )的一把钥匙,我爱( ),我喜欢吃回( ),我终于战胜答了( ),( )的友情,:————,我的周末,------真快乐,爱在------,我眼里的------,生活的------,------也是一种美,永远的------,给自己找个------ .....我就不写了,仅供参考!祝你学习进步!要给我加分哦!!!!

阅读全文

与小学五年级题例相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99