导航:首页 > 小学年级 > 小学数学四年级奥数题

小学数学四年级奥数题

发布时间:2020-11-26 13:25:14

小学四年级找规律奥数题100题

1:1,2,4,8,16,( ),64,128;
2:45,36,28,21,( ),10,6,3,1;
3:1,2,6,24,120,( ),5040;
4:32,16,48,24,72,36,( ),54,162;

(1)75,3,74,3,73,3,( ),( );
(2)1,4,5,4,9,4,( ),( );
(3)3,2,6,2,12,2,( ),( );
(4)76,2,75,3,74,4,( ),( );
(5)2,3,4,5,8,7,( ),(0);
(6)2,1,4,1,8,1,( ),( )。

(1)1,1,2,3,5,8,( ),( );
(2)0,2,2,4,6,10,( ),( );
(3)1,3,4,7,11,18,( ),( );
(4)1,1,1,3,5,9,( ),( );
(5)0,1,2,3,6,11,( ),( );

(1)0,1,3,8,21,55,( );
(2)2,6,12,20,30,42,( );
(3)1,2,4,7,11,16,( )。

(1)1,6,7,12,13,18,19,( );
(2)1,3,6,8,16,18,( ),( );
(3)1,4,3,8,5,12,7,( )
(4)1000,970,200,180,40,30,( ),( )。

运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是( )。

“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是( )。

班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是( )。

有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(),这20个数的和是( )。

甲问乙:今天是星期五,再过30天是星期()。乙问甲:假如16日是星期一,这个月的31日是星期( )。

甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?

有一串数,任何相邻的四个数之和都等于25。已知第1个数是3,第6个数是6,第11个数是7。问:这串数中第24个数是几?前77个数的和是多少?

节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去。问:
(1)第100盏灯是什么颜色?
(2)前150盏彩灯中有多少盏蓝灯?

下面这串数的规律是:从第3个数起,每个数都是它前面两个数之和的个位数。问:这串数中第88个数是几?
628088640448…

在下面的一串数中,从第五个数起,每个数都是它前面四个数之和的个位数字。那么在这串数中,能否出现相邻的四个数是“2000”?
135761939237134…

A,B,C,D四个盒子中依次放有8,6,3,1个球。第1个小朋友找到放球最少的盒子,然后从其它盒子中各取一个球放入这个盒子;第2个小朋友也找到放球最少的盒子,然后也从其它盒子中各取一个球放入这个盒子……当100位小朋友放完后,A,B,C,D四个盒子中各放有几个球?

1.有一串很长的珠子,它是按照5颗红珠、3颗白珠、4颗黄珠、2颗绿珠的顺序重复排列的。问:第100颗珠子是什么颜色?前200颗珠子中有多少颗红珠?
2.将1,2,3,4,…除以3的余数依次排列起来,得到一个数列。求这个数列前100个数的和。
3.有一串数,前两个数是9和7,从第三个数起,每个数是它前面两个数乘积的个位数。这串数中第100个数是几?前100个数之和是多少?
4.有一列数,第一个数是6,以后每一个数都是它前面一个数与7的和的个位数。这列数中第88个数是几?
5.小明按1~3报数,小红按1~4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?
6.A,B,C,D四个盒子中依次放有9,6,3,0个小球。第1个小朋友找到放球最多的盒子,从中拿出3个球放到其它盒子中各1个球;第2个小朋友也找到放球最多的盒子,也从中拿出3个球放到其它盒子中各1个球……当100个小朋友放完后,A,B,C,D四个盒子中各放有几个球?

⑵ 小学四年级数学奥数题

你好,你的答案应给是错了吧?应该是5分的52枚,2分的100枚!
算式其实很简单,如下:2份的枚数为。(152*5-60)除以(2+5)=100.则5分的枚数为,152-100=52
嘿嘿,希望能帮到你!

小学数学四年级奥数题

解:
1、假设:
a通话5次,分别和bcde还有小朋友1次,e通话仅1次
b通话4次,分别和acd和小朋友1次,d通话已经2次
c通话3次,分别和ab和小朋友1次
小朋友通话3次
2、其它班级人员有:(96+102-114)÷2=42(人)
五年级:96-42=54(人)
六年级:102-42=60(人)

⑷ 小学数学四年级奥数题:

~~~
拿最当中的两个 就是一白一黑
移到队伍的第1个白子的左段
假设白是1 黑是2
原来是11112222
现在12111222
再拿一白一黑放到最左端~~当然是连在一起的一白一黑不是刚刚移动过的
12121122
类推一下~再拿12
12121212 就变这样啦~OK 想要 黑色排在第1个就把子移动时放在队伍的最后就行了~

⑸ 小学四年级数学奥数题

1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?

分析:从5个元素中取3个的排列:P(5、3)=5×4×3=60

2、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?

分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216

另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?

分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?

分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;

首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个

1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;
1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;
1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;
1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;

总和为240000+18000+1800+180=259980

6、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?

分析:共有10000个数,其中不含数字3的有: 五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561 所求为10000-6561=3439个

7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?

分析:1□3□结构:8×7=56,3□1□同样56个,计112个;
2□4□结构:8×7=56,4□2□同样56个,计112个;
3□5□结构:8×7=56,5□3□同样56个,计112个;
4□6□结构:8×7=56,6□4□同样56个,计112个;
5□7□结构:8×7=56,7□5□同样56个,计112个;
6□8□结构:8×7=56,8□6□同样56个,计112个;
7□9□结构:8×7=56,9□7□同样56个,计112个;
2□0□结构:8×7=56,
以上共112×7×56=840个

8、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?

分析:因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47

9、某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?

分析:方法一:一张车票包括起点和终点,原来有P(7、2)=42张,(相当于从7个元素中取2个的排列),现在有P(10、2)=90,所以增加90-42=48张不同车票。

方法二:1、新站为起点,旧站为终点有3×7=21张,2、旧站为起点,新站为终点有7×3=21张,3、起点、终点均为新站有3×2=6张,以上共有21+21+6=48张

10、7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?

分析:因为7=1+1+1+1+1+1+1,相当于从6个加号中取3个的组合,C(6、3)=20种

11、从19、20、21、22、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?

分析:76个数中,奇数38个,偶数38个 偶数+偶数=偶数:C(38、2)=703种,奇数+奇数=偶数:C(38、2)=703种,以上共有703+703=1406种

12、用两个3,一个1,一个2可组成若干个不同的四位数,这样的四位数一共有多少个?

分析:因为有两个3,所以共有P(4、4)÷2=12个

13、有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?

分析:第一步考虑从5个元素中取3个来进行错贴,共有C(5、3)=10,第二步对这3个瓶子进行错贴,共有2种错贴方法,所以可能情况共有10×2=20种。

14、有9张同样大小的圆形纸片,其中标有数码“1”的有1张,标有数码“2”的有2张,标有数码“3”的有3张,标有数码“4”的有3张,把这9张圆形纸片如呼所示放置在一起,但标有相同数码的纸片不许*在一起。 ⑴如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法? ⑵如果M处放标有数码“2”的纸片,一共有多少种不同的放置方法?

分析:

⑴如果M处放标有数码“3”的纸片,只有唯一结构: 在剩下的6个位置中,3个“4”必须隔开,共有奇、偶位2种放法,在剩下的3个位置上“1”有3种放法(同时也确定了“2”的放法)。 由乘法原理得共有2×3=6种不同的放法。

⑵如果M处放标有数码“2”的纸片,有如下几种情况:

结构一: 3个“3”和3个“4”共有2种放法,再加上2和1可以交换位置,所以共有2×2=4种;

结构二:3个“4”有奇、偶位2种选择(相应的“1”也定了,只能*着已有的“3”,加上2和3可以交换,所以共有2×2=4种;

结构三:3个“3”有奇、偶位2种选择,“1”有唯一选择,只能*到已有的“4”,加上2和4可以交换位置,所以共有2×2=4种,

以上共有4+4+4=12种不同的放法。

15、一台晚会上有6个演唱节目和4个舞蹈节目。问:⑴如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?⑵如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?

分析:⑴4个舞蹈节目要排在一起,好比把4个舞蹈?在一起看成一个节目,这样和6个演唱共有7个节目,全排列7!,加上4个舞蹈本身也有全排4!,所以共有7!×4!=120960种。

⑵4个舞蹈必须放在6个演唱之间,6个演唱包括头尾共有7个空档,7个空档取出4个放舞蹈共有P(7、4),加上6个演唱的全排6!,共有P(7、4)×6!=604800种。
1.计算:1991+199.1+19.91+1.991.

解析:1991+199.1+19.91+1.991
=1991+9+199.1+0.9+19.91+0.09+1.991+0.009-(9+0.9+0.09+0.009)
=2000+200+20+2-9.999
=2222-10+0.001
=2212.001

2.计算:7142.85÷3.7÷2.7×1.7×0.7.

解析:7142.85÷3.7÷2.7×1.7×0.7
=7142.85÷37÷27×17×7
=7142.85×7÷999×17
=49999.95÷999×17
=50.05×17
=850.85

3.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数.)

解析:150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3(分)
光从太阳到地球要用约8.3分钟。

4.已知105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)=187.5,那么□所代表的数是多少?
解析:105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)
=105.5+(20+□÷4.6-1.53)÷(2×26.8÷26.8×0.125)
=105.5+(18.47+□÷4.6) ÷0.25
=105.5+18.47÷0.25+□÷4.6÷0.25
=105.5+73.88+□÷1.15
因为105.5+73.88+□÷1.15=187.5
所以□=(187.5-105.5-73.88) ×1.15=8.12×1.15=8.12+0.812+0.406=9.338
答:□=9.338

5.22.5-(□×32-24×□) ÷3.2=10 在上面算式的两个方框中填入相同的数,使得等式成立。那么所填的数应是多少?

解析:22.5-(□×32-24×□) ÷3.2
=22.5-□×(32-24) ÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10) ÷2.5=5
答:所填的数应是5。

6.计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99.

解析:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99
=(0.1+0.9) ×5÷2+(0.11+0.99) ×45÷2
=2.5+24.75
=27.25

7.计算:37.5×21.5×0.112+35.5×12.5×0.112.

解析:37.5×21.5×0.112+35.5×12.5×0.112
=0.112×(37.5×21.5+35.5×12.5)
=0.112×(12.5×3×21.5+35.5×12.5)
=0.112×12.5×(3×21.5+35.5)
=0.112×12.5×100
=1250×(0.1+0.01+0.002)
=125+12.5+2.5
=140

8.计算:3.42×76.3+7.63×57.6+9.18×23.7.

解析:3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37) ×91.8
=10×91.8
=918

9.计算:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2).

解析:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2)
=(16.4×2×91-16.4×92-16.4×40×1.75) ÷(0.2×0.2)
=16.4×(182-92-70) ÷(0.2×0.2)
=16.4×20÷0.2÷0.2
=82×100
=8200

10.计算:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87).

解析:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)
=(2+3.15+5.87) ×(3.15+5.87+7.32)-2×(3.15+5.87) -(3.15+5.87+7.32) ×(3.15+5.87)
=(3.15+5.87+7.32) ×(2+3.15+5.87-3.15-5.87) -2×(3.15+5.87)
=(3.15+5.87+7.32) ×2-2×(3.15+5.87)
=(3.15+5.87) ×2+7.32 ×2-2×(3.15+5.87)
=7.32×2
=14.64

11.求和式3+33+333+…+33…3(10个3)计算结果的万位数字.

解析:个位10个3相加,和为30,向十位进3; 十位9个3相加,和为27,加上个位的进位3得30,向百位进3; 百位8个3相加,和为24,加上十位的进位3得27,向千位进2; 千位7个3相加,和为21,加上百位的进位2得23,向万位进2; 万位6个3相加,和为18,加上千位的进位2得20,万位得数是0。
答:计算结果的万位数字是0。

12.计算:19+199+1999+…+199…9(1999个9).

解析:19+199+1999+…+199…9(1999个9)
=(20-1)+(200-1)+(2000-1)+…+(200…0(1999个0)-1)
=22…20(1999个2)-1999×1
=22…2(1996个2)0221

13.算式99…9(1992个9)×99…9(1992个9)+199…9(1992个9)的计算结果的末位有多少个零?

解析:99…9(1992个9)×99…9(1992个9)+199…9(1992个9)
=99…9(1992个9)×(100…0-1)(1992个0)+199…9(1992个9)
=99…9(1992个9) 0(1992个0) - 99…9(1992个9)+199…9(1992个9)
=99…9(1992个9) 0(1992个0)+100…0(1992个0)
=100…0(3984个0)

14.计算:33…3(10个3)×66…6(10个6).

解析:33…3(10个3)×66…6(10个6)
=33…3(10个3)×3×22…2(10个2)
=99…9(10个9)×22…2(10个2)
=(100…0(10个0)-1) ×22…2(10个2)
=22…2(10个2)00…0(10个0)-22…2(10个2)
=22…2(9个2)177(9个7)8

15.求算式99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)的计算结果的各位数字之和.

解析:99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)
=9×11…1(1994个1)×8×11…1(1994个1)÷6÷11…1(1994个1)
=9×8÷6×11…1(1994个1)
=12×11…1(1994个1)
=(10+2)×11…1(1994个1)
=11…1(1995个1)+22…2(1994个1)
=13333…3(1993个1) 2
各位数字之和=1+1993×3+2=5982
答:计算结果的各位数字之和5982。

⑹ 四年级奥数题100道

四年级:平均数问题思维训练题

1.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶。然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?

2.四年级有60名同学去栽树,平均每人栽4棵,恰好栽完。随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学?

3.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人?

4.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人?

5.甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数。

6.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分?

7.如果四个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁?

8.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第三个数是多少?

9. 梓涵参加了三次数学竞赛,平均分是84分,已知前两次平均分是82分,求他的三次得了多少分?

10. 梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分。梓涵数学考了多少分?

11. 如果三个人的平均年龄是22岁,且没有小于18岁的,那么年龄最大的可能是多少岁?

12. . 如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁?

13. 在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米?

14. 一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页?

15. 梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完。这个同学平均每天读多少页?

16.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分?

四年级应用题1
1、奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元?

2、3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克?

3、张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元?

4、粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克?

1、一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克?

2、一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克?

3、一瓶酒连瓶重80克,喝了一半的酒后,连瓶还重50克,原来有酒多少克?瓶重多少克?

4、一瓶汽水连瓶重45克,用去一半的汽水后,连瓶还重25克,原来有汽水多少克?瓶重多少克?

1、有6箱鸡蛋,每箱鸡蛋个数相等,如果从每箱中拿出50个,那么6箱剩下的鸡蛋个数正好和原来5箱的个数相等,原来每箱鸡蛋多少个?

2、有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的个数相等,原来每筐苹果多少个?

3、有5箱饼干,每箱鸡蛋重量相等,如果从每箱中拿出40克,那么5箱剩下的总克数正好和原来3箱的克数相等,原来每箱饼干多少克?

4、一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人?

1、韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字?

2、张梓涵看一本书,计划每天看15页,实际每天比计划多看3页,结果提前两天完成任务。这本书有多少页?

3、修一条路,计划每天修60米,实际每天比计划多修8米,结果提前4天完成任务。这条路多少米?

4、陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤?

1、琦涵有10张画片,郑洁有4 张画片。琦涵给郑洁多少张画片后,她俩的画片张数相等?

2、红盒子里有52个玻璃球,蓝盒子里有34个玻璃球,每次从多的盒子里取出3个放到少的盒子里,拿几次才能使两个盒子里的玻璃球的个数相等?

3、大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等?

4、书架的上层有25本书,下层有27本书,爸爸又买回10本书,怎样放才能使书架上、下两层的书同样多?

四年级应用题2

1、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?

2、某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度?

3、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时?

4、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱。由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?

5、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?

6、锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天?

7、学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋。问鸡蛋价格下调后每千克是多少元?

8、18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?

9、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?

10、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?
11、 3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?

12、一个机械厂4台机床5小时可以生产零件720个。照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时?

13、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?

14、九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天?

15、扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天?

16、师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。徒弟每小时加工多少个?

17、甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时。泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地?

18、旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务?

19、舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆?

20、德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题?
四年级和差问题
一、1、 学校有排球、足球共50个,排球比足球多4个,排球、足球各多少个?

2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人?

3、甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?

4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁?

5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。小敏和他爸爸的年龄各是多少岁?

6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。小兰语文、数学各得多少分?

二、1、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本?

2、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。原来每桶各有水多少千克?

3、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。甲、乙两个仓库各存大米多少吨?

4、甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元?
三、1、甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?

2、甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨?

3、甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克?

4、甲乙两个学校共有学生2008人,如果从甲校调走20人,乙校调走15人,甲校比乙校还多5人,两校原各有学生多少人?

5、学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克?

6、《红楼梦》分上、中、下三册,全书共108元。上册比中册贵11元,下册比中册便宜5元。上、中、下三册各是多少元?

7、四个人年龄之和是77岁,最小的10岁,他和最大的人的年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁?

8、小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米?

9、曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克?

10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵?
四年级和倍问题

1、小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍,小红和妈妈各是多少岁?

2、甲乙两数和是150,甲数除以乙数的商是4,甲乙两数各是多少?

3、一块长方形木板,长是宽的2倍,周长54厘米,这块长方形木块的面积是多少?

4、一筐苹果、一筐梨和一筐葡萄共重42千克,知道苹果重量是葡萄的2倍,梨的重量是葡萄的3倍,苹果、梨、葡萄各是多少千克?

5、三年级三个班共植树200棵,二班植树棵数是一班的2倍,三班植树棵数和二班一样多,三个班各植树多少棵?

6、有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那么甲堆、乙堆、丙堆煤各重多少千克?

7、有三队修路队合修一条长240千米的路,甲队修的是乙队的3倍,丙队修的是甲队的2倍,那么甲队、乙队、丙队各修多少千米?

8、张老师买回篮球足球共83个球,其中篮球比足球的2倍多5个,这两种球各有多少个?

9、张老师买回篮球足球排球共83个球,其中篮球比足球的2倍多5个,排球比足球的2倍少7个,这三种球各有多少个?

10、张老师买回篮球足球排球共83个球,其中篮球是足球的2倍,足球比排球多5个,这三种球各有多少个?

11、小华有笔30枝,小明有笔15只,问小明给几枝给小华后,小华的枝数是小明的8倍?

12、小明有书18本,小芳有书8本,现在又买来16本,怎样分配才能使小明的本数是小芳的2倍?

13、甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?

14、一个除式,商是18,余数是4,被除数、除数、商、余数的和是292,除数与被除数各是多少?
四年级差倍问题

1、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只?

2、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。大小书架原来各有多少本?

3、老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼?

4、张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个?

5、副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克?

6、张老师买回篮球足球排球,其中足球是篮球的3倍,足球比排球多7个,排球比篮球多11个。这三种球各有多少个?

7、梨比葡萄重2000千克,苹果重量是葡萄的2倍,苹果重量比梨多3000个,苹果、梨、葡萄各是多少千克?

8、小明的存款数是小刚的3倍,现在小明取出380元,小刚取出110元,两人的存款数变得同样多。小明和小刚原来各存款多少元?

9、甲仓存粮吨数是乙仓的3倍,如果甲仓中取出60吨,乙仓中运进80吨,甲、乙两个粮仓存粮吨数正好相等。甲、乙两个粮仓各存粮多少吨?

10、甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中运进60吨,乙仓中运进260吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨?

11、小张有36本课外书,小徐有24本课外书,两人捐出同样多的本数后,小张剩下的本数是小徐剩下本数的3倍,两人各捐出多少本书?

12、师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个,这时,徒弟剩下的个数是师傅的3倍。师徒要加工多少个零件?
用假设法解题
兔数=(总脚数—每只鸡脚数×鸡兔总数)÷(每只兔子脚数—每只鸡脚数)
鸡数=鸡兔总数-兔数 (假设鸡,先求出兔)
或:鸡数=(每只兔脚数×鸡兔总数—总脚数)÷(每只兔子脚数—每只鸡脚数)
兔数=鸡兔总数-鸡数 (假设兔,先求出鸡)

1、鸡兔共30只,共有脚70只,鸡兔各有多少只?

2、鸡兔共20只,共有脚50只,鸡兔各有多少只?

3、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?

4、体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?

1、买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张?

2、扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张?

3、有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.
1、一批水泥,用小车装载,要用20辆,用大车装载,只要12辆,每辆大车比小车多装4吨。这批水泥有多少吨?

2、一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。这批水泥有多少吨?
1、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?

2、某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?

3、九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?

4、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只?

1、李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张?

2、王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?

1、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种昆虫各几只?

2、甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本?

3、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

4、有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张?
盈亏问题的关系式:
1、(盈+亏)÷两次分配的差=份数
2、(大盈-小盈)÷两次分配的差=份数
3、(大亏-小亏)÷两次分配的差=份数
每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量,
解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。
1、幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?
2、小明带了一些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?小明带了多少钱?
3、一个小组去山坡植树,如果每人栽4棵,还剩12棵,如果每人栽8棵,则还缺4棵,这个小组有多少人?一共有多少棵树?
4、一组学生去搬书,如果每人搬2本,还剩12本,如果每人搬4本,还缺6本,这组学生有几人?这批书有多少本?
1、老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本?
2、把一袋糖分给小朋友们,如果每人分4粒,则多出12粒,如果每人分6粒,则多出2粒,问有几个小朋友?有多少粒糖?
3、妈妈买来一些苹果分给全家人,如果每人分6个,则多出了12个,如果每人分7个,则多出了6个,全家有几人?妈妈买回多少个苹果?
4、某学校有一些学生住校,每间宿舍住8人,空出床位24张,如果每间宿舍住10人,则空出床位2张,学校共有几间宿舍?住宿学生有几人?
1、学校派一些学生搬树苗,如果每人搬6棵,则差4棵,如果每人搬8棵,则差18棵,学校派了多少名学生?这批树苗有多少棵?
2、自然课上,老师给学生发树叶,如果每人分5片树叶,则差3片树叶,如果每人分7片树叶,则差25片树叶,这节课有多少学生?老师一共带了多少树叶?
3、数学兴趣小组同学做数学题,如果每人做6道题,则少4道,如果每人做8道题,则少16道,问有几个同学?一共有多少道数学题?
4、学校排练节目,如果每行排8人,则有一行少2人,如果每行排9人,则有一行少7人,一共排了多少行?一共有多少人?
1、三(1)班学生去公园划船,如果每条船坐4人,则多出4人;如果每条船坐6人,则多出了4条船;公园里有多少条船?三(1)班有多少名学生?
2、学校给新生分配宿舍,如果每间住8人,则少了2间房,如果每间住10人,则多出了2间房,一共有几间房分给新生?新生有多少人住宿?
3、同学们去划船,如果每条船坐5人,则有10人没船坐,如果每条船多坐2人,则多出两条船,共有几条船?有多少个同学?
4、小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则要早到4分钟,小明家到学校有多远?
1、三年级学生练习册,如果每人发5册还剩下32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么三年级学生有多少人?练习册有多少本?
2、小明买了一本《趣味数学》,他计划:如果每天做3题,则剩下16题,如果每天做5题,则最后一天只要做1题。那么这本书共有几道题?小明计划做几天?
3、三(2)班同学去植树,如果每人植5棵,还有3棵没有人植,如果其中4人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么参加植树的有几名同学?共植树多少棵?
4、小明从家到学校,出发时看看表,发现如果每分钟步行80米,他将迟到5分钟,如果先步行10分钟后,再改成骑车每分钟行200米,他就可以提前1分钟到校。问小明从家出发时离上学时间有多少分钟?

⑺ 小学数学四年级奥数题

第一道题: E1次是与A,D2次是与A、B, C3次是与A、B、小朋友。
所以小朋友已与A、B、C通话3次。
第二道题: 六+其他=102,五+其他=96,五+六=114
六+其他+五+其他+五+六=102+96+114
2(五+六+其他)=312
五+六+其他=156
五=156-102=54
六=156-96=60

⑻ 小学四年级数学奥数题

解:(50+10)/(12-8)=15(长椅数)
15*(8-7)+50=65

阅读全文

与小学数学四年级奥数题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99